Application of Wavelet Feature Extraction and Artificial Neural Networks for Improving the Performance of Gas–Liquid Two-Phase Flow Meters Used in Oil and Petrochemical Industries
Measuring fluid characteristics is of high importance in various industries such as the polymer, petroleum, and petrochemical industries, etc. Flow regime classification and void fraction measurement are essential for predicting the performance of many systems. The efficiency of multiphase flow mete...
Guardado en:
Autores principales: | Siavash Hosseini, Osman Taylan, Mona Abusurrah, Thangarajah Akilan, Ehsan Nazemi, Ehsan Eftekhari-Zadeh, Farheen Bano, Gholam Hossein Roshani |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6840531cead147eeb65ab2de9046f280 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Controlling Effects of Astrocyte on Neuron Behavior in Tripartite Synapse Using VHDL–AMS
por: Osman Taylan, et al.
Publicado: (2021) -
Cotton stubble detection based on wavelet decomposition and texture features
por: Yukun Yang, et al.
Publicado: (2021) -
Selección de una wavelet madre para el análisis frecuencial de señales eléctricas transitorias usando WPD
por: Gómez-Luna,E, et al.
Publicado: (2013) -
FPGA Realization of Two-DimensionalWavelet and Wavelet Packet Transform
por: Mohammed N. Al-Turfi, et al.
Publicado: (2005) -
Análisis de Tráfico Auto-similar en Redes de Comunicaciones Usando Onditas (Wavelets)
por: Alarcón-Aquino,V., et al.
Publicado: (2005)