Chen-Ricci Inequalities with a Quarter Symmetric Connection in Generalized Space Forms
In this article, we obtain improved Chen-Ricci inequalities for submanifolds of generalized space forms with quarter-symmetric metric connection, with the help of which we completely characterized the Lagrangian submanifold in generalized complex space form and a Legendrian submanifold in a generali...
Guardado en:
Autores principales: | Ali H. Al-Khaldi, Mohd. Aquib, Mohd Aslam, Meraj Ali Khan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/68455b2e0c8e428db9227988174aa806 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Complete CSC Hypersurfaces Satisfying an Okumura-Type Inequality in Ricci Symmetric Manifolds
por: Xun Xie, et al.
Publicado: (2021) -
Geometry of <i>α</i>-Cosymplectic Metric as ∗-Conformal <i>η</i>-Ricci–Yamabe Solitons Admitting Quarter-Symmetric Metric Connection
por: Pengfei Zhang, et al.
Publicado: (2021) -
Results on para-Sasakian manifold admitting a quarter symmetric metric connection
por: Vishnuvardhana.,S. V., et al.
Publicado: (2020) -
Some geometric properties of η Ricci solitons and gradient Ricci solitons on (lcs) n -manifolds
por: Yadav,S. K., et al.
Publicado: (2017) -
Geometric Mechanics on Warped Product Semi-Slant Submanifold of Generalized Complex Space Forms
por: Yanlin Li, et al.
Publicado: (2021)