Automated Muzzle Detection and Biometric Identification via Few-Shot Deep Transfer Learning of Mixed Breed Cattle
Livestock welfare and management could be greatly enhanced by the replacement of branding or ear tagging with less invasive visual biometric identification methods. Biometric identification of cattle from muzzle patterns has previously indicated promising results. Significant barriers exist in the t...
Guardado en:
Autores principales: | Ali Shojaeipour, Greg Falzon, Paul Kwan, Nooshin Hadavi, Frances C. Cowley, David Paul |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/684cef23a2854930b488e49da43bfc5c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Few-Shot Object Detection via Sample Processing
por: Honghui Xu, et al.
Publicado: (2021) -
Meta-Seg: A Generalized Meta-Learning Framework for Multi-Class Few-Shot Semantic Segmentation
por: Zhiying Cao, et al.
Publicado: (2019) -
Optimizing Few-Shot Learning Based on Variational Autoencoders
por: Ruoqi Wei, et al.
Publicado: (2021) -
Task-Adaptive Embedding Learning with Dynamic Kernel Fusion for Few-Shot Remote Sensing Scene Classification
por: Pei Zhang, et al.
Publicado: (2021) -
Task-Aware Dual Prototypical Network for Few-Shot Human-Object Interaction Recognition
por: AN Ping, JI Zhong, LIU Xiyao
Publicado: (2021)