Inter-well interference and well spacing optimization for shale gas reservoirs
Design and optimization of well spacing is a key indicator for evaluating the development effect of shale gas reservoirs. On the basis of theoretical understanding, and after the verification by analogy, numerical simulation, and economic evaluation, a complete workflow from inter-well interference...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/684da3410283467db741ed536e85f9c9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:684da3410283467db741ed536e85f9c9 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:684da3410283467db741ed536e85f9c92021-11-22T04:28:11ZInter-well interference and well spacing optimization for shale gas reservoirs2468-256X10.1016/j.jnggs.2021.09.001https://doaj.org/article/684da3410283467db741ed536e85f9c92021-10-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2468256X21000523https://doaj.org/toc/2468-256XDesign and optimization of well spacing is a key indicator for evaluating the development effect of shale gas reservoirs. On the basis of theoretical understanding, and after the verification by analogy, numerical simulation, and economic evaluation, a complete workflow from inter-well interference simulation and dynamic data diagnosis to multi-well production simulation and well spacing optimization was formed. First, a pressure detection boundary propagation model is established to simulate the response degree of inter-well interference under different connected conditions. Second, inter-well interference is identified and diagnosed depending on the inter-well interference response behaviors and the interpretation of performance data from gas wells. Third, taking the geological interpretation and dynamic analysis results as basic parameters, a multi-well numerical model for volume fracturing in gas reservoirs is established to simulate the production performance of gas field, and then well spacing is optimized in combination with the net present value model. The application in the Ning 201 well block in the Changning National Shale Gas Demonstration Area has shown that a smaller well spacing can allow a premature inter-well interference and also the enhancement of recovery in the entire block. Given the current fracturing scale and parameter system, the well spacing of 300–400 m can be optimized to 260–320 m, that is, the number of wells per unit area increases by 20%–30%. As a result, the recovery percent of reserves in the block increase by about 10%. The net present value of the block rises, but the corresponding optimal well spacing does not change, with the production period.Jingyuan ChenYunsheng WeiJunlei WangWei YuYadong QiJianfa WuWanjing LuoElsevierarticleStaged fractured horizontal wellFracture connectionInter-well interferenceWell spacing optimizationNet present value modelGas industryTP751-762ENJournal of Natural Gas Geoscience, Vol 6, Iss 5, Pp 301-312 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Staged fractured horizontal well Fracture connection Inter-well interference Well spacing optimization Net present value model Gas industry TP751-762 |
spellingShingle |
Staged fractured horizontal well Fracture connection Inter-well interference Well spacing optimization Net present value model Gas industry TP751-762 Jingyuan Chen Yunsheng Wei Junlei Wang Wei Yu Yadong Qi Jianfa Wu Wanjing Luo Inter-well interference and well spacing optimization for shale gas reservoirs |
description |
Design and optimization of well spacing is a key indicator for evaluating the development effect of shale gas reservoirs. On the basis of theoretical understanding, and after the verification by analogy, numerical simulation, and economic evaluation, a complete workflow from inter-well interference simulation and dynamic data diagnosis to multi-well production simulation and well spacing optimization was formed. First, a pressure detection boundary propagation model is established to simulate the response degree of inter-well interference under different connected conditions. Second, inter-well interference is identified and diagnosed depending on the inter-well interference response behaviors and the interpretation of performance data from gas wells. Third, taking the geological interpretation and dynamic analysis results as basic parameters, a multi-well numerical model for volume fracturing in gas reservoirs is established to simulate the production performance of gas field, and then well spacing is optimized in combination with the net present value model. The application in the Ning 201 well block in the Changning National Shale Gas Demonstration Area has shown that a smaller well spacing can allow a premature inter-well interference and also the enhancement of recovery in the entire block. Given the current fracturing scale and parameter system, the well spacing of 300–400 m can be optimized to 260–320 m, that is, the number of wells per unit area increases by 20%–30%. As a result, the recovery percent of reserves in the block increase by about 10%. The net present value of the block rises, but the corresponding optimal well spacing does not change, with the production period. |
format |
article |
author |
Jingyuan Chen Yunsheng Wei Junlei Wang Wei Yu Yadong Qi Jianfa Wu Wanjing Luo |
author_facet |
Jingyuan Chen Yunsheng Wei Junlei Wang Wei Yu Yadong Qi Jianfa Wu Wanjing Luo |
author_sort |
Jingyuan Chen |
title |
Inter-well interference and well spacing optimization for shale gas reservoirs |
title_short |
Inter-well interference and well spacing optimization for shale gas reservoirs |
title_full |
Inter-well interference and well spacing optimization for shale gas reservoirs |
title_fullStr |
Inter-well interference and well spacing optimization for shale gas reservoirs |
title_full_unstemmed |
Inter-well interference and well spacing optimization for shale gas reservoirs |
title_sort |
inter-well interference and well spacing optimization for shale gas reservoirs |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/684da3410283467db741ed536e85f9c9 |
work_keys_str_mv |
AT jingyuanchen interwellinterferenceandwellspacingoptimizationforshalegasreservoirs AT yunshengwei interwellinterferenceandwellspacingoptimizationforshalegasreservoirs AT junleiwang interwellinterferenceandwellspacingoptimizationforshalegasreservoirs AT weiyu interwellinterferenceandwellspacingoptimizationforshalegasreservoirs AT yadongqi interwellinterferenceandwellspacingoptimizationforshalegasreservoirs AT jianfawu interwellinterferenceandwellspacingoptimizationforshalegasreservoirs AT wanjingluo interwellinterferenceandwellspacingoptimizationforshalegasreservoirs |
_version_ |
1718418164415463424 |