Multiple imputation for analysis of incomplete data in distributed health data networks

Distributed health data networks (DHDNs) leverage data from multiple healthcare systems, but often face major analytical challenges in the presence of missing data. This paper develops distributed multiple imputation methods that do not require sharing subject-level data across health systems.

Guardado en:
Detalles Bibliográficos
Autores principales: Changgee Chang, Yi Deng, Xiaoqian Jiang, Qi Long
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/68574407e5e44d52979b85f598a56f7e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:68574407e5e44d52979b85f598a56f7e
record_format dspace
spelling oai:doaj.org-article:68574407e5e44d52979b85f598a56f7e2021-12-02T14:41:04ZMultiple imputation for analysis of incomplete data in distributed health data networks10.1038/s41467-020-19270-22041-1723https://doaj.org/article/68574407e5e44d52979b85f598a56f7e2020-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-19270-2https://doaj.org/toc/2041-1723Distributed health data networks (DHDNs) leverage data from multiple healthcare systems, but often face major analytical challenges in the presence of missing data. This paper develops distributed multiple imputation methods that do not require sharing subject-level data across health systems.Changgee ChangYi DengXiaoqian JiangQi LongNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Changgee Chang
Yi Deng
Xiaoqian Jiang
Qi Long
Multiple imputation for analysis of incomplete data in distributed health data networks
description Distributed health data networks (DHDNs) leverage data from multiple healthcare systems, but often face major analytical challenges in the presence of missing data. This paper develops distributed multiple imputation methods that do not require sharing subject-level data across health systems.
format article
author Changgee Chang
Yi Deng
Xiaoqian Jiang
Qi Long
author_facet Changgee Chang
Yi Deng
Xiaoqian Jiang
Qi Long
author_sort Changgee Chang
title Multiple imputation for analysis of incomplete data in distributed health data networks
title_short Multiple imputation for analysis of incomplete data in distributed health data networks
title_full Multiple imputation for analysis of incomplete data in distributed health data networks
title_fullStr Multiple imputation for analysis of incomplete data in distributed health data networks
title_full_unstemmed Multiple imputation for analysis of incomplete data in distributed health data networks
title_sort multiple imputation for analysis of incomplete data in distributed health data networks
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/68574407e5e44d52979b85f598a56f7e
work_keys_str_mv AT changgeechang multipleimputationforanalysisofincompletedataindistributedhealthdatanetworks
AT yideng multipleimputationforanalysisofincompletedataindistributedhealthdatanetworks
AT xiaoqianjiang multipleimputationforanalysisofincompletedataindistributedhealthdatanetworks
AT qilong multipleimputationforanalysisofincompletedataindistributedhealthdatanetworks
_version_ 1718390056699297792