Multiple imputation for analysis of incomplete data in distributed health data networks
Distributed health data networks (DHDNs) leverage data from multiple healthcare systems, but often face major analytical challenges in the presence of missing data. This paper develops distributed multiple imputation methods that do not require sharing subject-level data across health systems.
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/68574407e5e44d52979b85f598a56f7e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:68574407e5e44d52979b85f598a56f7e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:68574407e5e44d52979b85f598a56f7e2021-12-02T14:41:04ZMultiple imputation for analysis of incomplete data in distributed health data networks10.1038/s41467-020-19270-22041-1723https://doaj.org/article/68574407e5e44d52979b85f598a56f7e2020-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-19270-2https://doaj.org/toc/2041-1723Distributed health data networks (DHDNs) leverage data from multiple healthcare systems, but often face major analytical challenges in the presence of missing data. This paper develops distributed multiple imputation methods that do not require sharing subject-level data across health systems.Changgee ChangYi DengXiaoqian JiangQi LongNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Changgee Chang Yi Deng Xiaoqian Jiang Qi Long Multiple imputation for analysis of incomplete data in distributed health data networks |
description |
Distributed health data networks (DHDNs) leverage data from multiple healthcare systems, but often face major analytical challenges in the presence of missing data. This paper develops distributed multiple imputation methods that do not require sharing subject-level data across health systems. |
format |
article |
author |
Changgee Chang Yi Deng Xiaoqian Jiang Qi Long |
author_facet |
Changgee Chang Yi Deng Xiaoqian Jiang Qi Long |
author_sort |
Changgee Chang |
title |
Multiple imputation for analysis of incomplete data in distributed health data networks |
title_short |
Multiple imputation for analysis of incomplete data in distributed health data networks |
title_full |
Multiple imputation for analysis of incomplete data in distributed health data networks |
title_fullStr |
Multiple imputation for analysis of incomplete data in distributed health data networks |
title_full_unstemmed |
Multiple imputation for analysis of incomplete data in distributed health data networks |
title_sort |
multiple imputation for analysis of incomplete data in distributed health data networks |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/68574407e5e44d52979b85f598a56f7e |
work_keys_str_mv |
AT changgeechang multipleimputationforanalysisofincompletedataindistributedhealthdatanetworks AT yideng multipleimputationforanalysisofincompletedataindistributedhealthdatanetworks AT xiaoqianjiang multipleimputationforanalysisofincompletedataindistributedhealthdatanetworks AT qilong multipleimputationforanalysisofincompletedataindistributedhealthdatanetworks |
_version_ |
1718390056699297792 |