Multiple imputation for analysis of incomplete data in distributed health data networks
Distributed health data networks (DHDNs) leverage data from multiple healthcare systems, but often face major analytical challenges in the presence of missing data. This paper develops distributed multiple imputation methods that do not require sharing subject-level data across health systems.
Guardado en:
Autores principales: | Changgee Chang, Yi Deng, Xiaoqian Jiang, Qi Long |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/68574407e5e44d52979b85f598a56f7e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multiple imputation with compatibility for high-dimensional data.
por: Faisal Maqbool Zahid, et al.
Publicado: (2021) -
Multiple imputation of maritime search and rescue data at multiple missing patterns.
por: Guobo Wang, et al.
Publicado: (2021) -
An accurate and robust imputation method scImpute for single-cell RNA-seq data
por: Wei Vivian Li, et al.
Publicado: (2018) -
Bayesian network-driven clustering analysis with feature selection for high-dimensional multi-modal molecular data
por: Yize Zhao, et al.
Publicado: (2021) -
Paired Multiple-Choice Questions Reveal Students’ Incomplete Statistical Thinking about Variation during Data Analysis
por: Jenna Hicks, et al.
Publicado: (2021)