Machine-learning models to replicate large-eddy simulations of air pollutant concentrations along boulevard-type streets
<p>Running large-eddy simulations (LESs) can be burdensome and computationally too expensive from the application point of view, for example, to support urban planning. In this study, regression models are used to replicate modelled air pollutant concentrations from LES in urban boulevards. We...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Copernicus Publications
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/685f97ccf9e645e79107d4184f19efa7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:685f97ccf9e645e79107d4184f19efa7 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:685f97ccf9e645e79107d4184f19efa72021-12-02T14:48:14ZMachine-learning models to replicate large-eddy simulations of air pollutant concentrations along boulevard-type streets10.5194/gmd-14-7411-20211991-959X1991-9603https://doaj.org/article/685f97ccf9e645e79107d4184f19efa72021-12-01T00:00:00Zhttps://gmd.copernicus.org/articles/14/7411/2021/gmd-14-7411-2021.pdfhttps://doaj.org/toc/1991-959Xhttps://doaj.org/toc/1991-9603<p>Running large-eddy simulations (LESs) can be burdensome and computationally too expensive from the application point of view, for example, to support urban planning. In this study, regression models are used to replicate modelled air pollutant concentrations from LES in urban boulevards. We study the performance of regression models and discuss how to detect situations where the models are applied outside their training domain and their outputs cannot be trusted. Regression models from 10 different model families are trained and a cross-validation methodology is used to evaluate their performance and to find the best set of features needed to reproduce the LES outputs. We also test the regression models on an independent testing dataset. Our results suggest that in general, log-linear regression gives the best and most robust performance on new independent data. It clearly outperforms the dummy model which would predict constant concentrations for all locations (multiplicative minimum RMSE (mRMSE) of <span class="inline-formula">0.76</span> vs. <span class="inline-formula">1.78</span> of the dummy model). Furthermore, we demonstrate that it is possible to detect concept drift, i.e. situations where the model is applied outside its training domain and a new LES run may be necessary to obtain reliable results. Regression models can be used to replace LES simulations in estimating air pollutant concentrations, unless higher accuracy is needed. In order to have reliable results, it is however important to do the model and feature selection carefully to avoid overfitting and to use methods to detect the concept drift.</p>M. LangeH. SuominenM. KurppaL. JärviL. JärviE. OikarinenR. SavvidesK. PuolamäkiK. PuolamäkiCopernicus PublicationsarticleGeologyQE1-996.5ENGeoscientific Model Development, Vol 14, Pp 7411-7424 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Geology QE1-996.5 |
spellingShingle |
Geology QE1-996.5 M. Lange H. Suominen M. Kurppa L. Järvi L. Järvi E. Oikarinen R. Savvides K. Puolamäki K. Puolamäki Machine-learning models to replicate large-eddy simulations of air pollutant concentrations along boulevard-type streets |
description |
<p>Running large-eddy simulations (LESs) can be burdensome and computationally too expensive from the application point of view, for example, to support urban planning. In this study, regression models are used to replicate modelled air pollutant concentrations from LES in urban boulevards. We study the performance of regression models and discuss how to detect situations where the models are applied outside their training domain and their outputs cannot be trusted.
Regression models from 10 different model families are trained and a cross-validation methodology is used to evaluate their performance and to find the best set of features needed to reproduce the LES outputs. We also test the regression models on an independent testing dataset.
Our results suggest that in general, log-linear regression gives the best and most robust performance on new independent data. It clearly outperforms the dummy model which would predict constant concentrations for all locations (multiplicative minimum RMSE (mRMSE) of <span class="inline-formula">0.76</span> vs. <span class="inline-formula">1.78</span> of the dummy model). Furthermore, we demonstrate that it is possible to detect concept drift, i.e. situations where the model is applied outside its training domain and a new LES run may be necessary to obtain reliable results.
Regression models can be used to replace LES simulations in estimating air pollutant concentrations, unless higher accuracy is needed. In order to have reliable results, it is however important to do the model and feature selection carefully to avoid overfitting and to use methods to detect the concept drift.</p> |
format |
article |
author |
M. Lange H. Suominen M. Kurppa L. Järvi L. Järvi E. Oikarinen R. Savvides K. Puolamäki K. Puolamäki |
author_facet |
M. Lange H. Suominen M. Kurppa L. Järvi L. Järvi E. Oikarinen R. Savvides K. Puolamäki K. Puolamäki |
author_sort |
M. Lange |
title |
Machine-learning models to replicate large-eddy simulations of air pollutant concentrations along boulevard-type streets |
title_short |
Machine-learning models to replicate large-eddy simulations of air pollutant concentrations along boulevard-type streets |
title_full |
Machine-learning models to replicate large-eddy simulations of air pollutant concentrations along boulevard-type streets |
title_fullStr |
Machine-learning models to replicate large-eddy simulations of air pollutant concentrations along boulevard-type streets |
title_full_unstemmed |
Machine-learning models to replicate large-eddy simulations of air pollutant concentrations along boulevard-type streets |
title_sort |
machine-learning models to replicate large-eddy simulations of air pollutant concentrations along boulevard-type streets |
publisher |
Copernicus Publications |
publishDate |
2021 |
url |
https://doaj.org/article/685f97ccf9e645e79107d4184f19efa7 |
work_keys_str_mv |
AT mlange machinelearningmodelstoreplicatelargeeddysimulationsofairpollutantconcentrationsalongboulevardtypestreets AT hsuominen machinelearningmodelstoreplicatelargeeddysimulationsofairpollutantconcentrationsalongboulevardtypestreets AT mkurppa machinelearningmodelstoreplicatelargeeddysimulationsofairpollutantconcentrationsalongboulevardtypestreets AT ljarvi machinelearningmodelstoreplicatelargeeddysimulationsofairpollutantconcentrationsalongboulevardtypestreets AT ljarvi machinelearningmodelstoreplicatelargeeddysimulationsofairpollutantconcentrationsalongboulevardtypestreets AT eoikarinen machinelearningmodelstoreplicatelargeeddysimulationsofairpollutantconcentrationsalongboulevardtypestreets AT rsavvides machinelearningmodelstoreplicatelargeeddysimulationsofairpollutantconcentrationsalongboulevardtypestreets AT kpuolamaki machinelearningmodelstoreplicatelargeeddysimulationsofairpollutantconcentrationsalongboulevardtypestreets AT kpuolamaki machinelearningmodelstoreplicatelargeeddysimulationsofairpollutantconcentrationsalongboulevardtypestreets |
_version_ |
1718389514258350080 |