Application of an Artificial Neural Network to Develop Fracture Toughness Predictor of Ferritic Steels Based on Tensile Test Results
Analyzing the structural integrity of ferritic steel structures subjected to large temperature variations requires the collection of the fracture toughness (<i>K<sub>J</sub></i><sub>c</sub>) of ferritic steels in the ductile-to-brittle transition region. Consequen...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6877efa5a65d4c2f999a2270a37b7b39 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6877efa5a65d4c2f999a2270a37b7b39 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6877efa5a65d4c2f999a2270a37b7b392021-11-25T18:21:36ZApplication of an Artificial Neural Network to Develop Fracture Toughness Predictor of Ferritic Steels Based on Tensile Test Results10.3390/met111117402075-4701https://doaj.org/article/6877efa5a65d4c2f999a2270a37b7b392021-10-01T00:00:00Zhttps://www.mdpi.com/2075-4701/11/11/1740https://doaj.org/toc/2075-4701Analyzing the structural integrity of ferritic steel structures subjected to large temperature variations requires the collection of the fracture toughness (<i>K<sub>J</sub></i><sub>c</sub>) of ferritic steels in the ductile-to-brittle transition region. Consequently, predicting <i>K<sub>J</sub></i><sub>c</sub> from minimal testing has been of interest for a long time. In this study, a Windows-ready <i>K<sub>J</sub></i><sub>c</sub> predictor based on tensile properties (specifically, yield stress σ<sub>YSRT</sub> and tensile strength <i>σ</i><sub>BRT</sub> at room temperature (RT) and <i>σ</i><sub>YS</sub> at <i>K<sub>J</sub></i><sub>c</sub> prediction temperature) was developed by applying an artificial neural network (ANN) to 531 <i>K<sub>J</sub></i><sub>c</sub> data points. If the <i>σ</i><sub>YS</sub> temperature dependence can be adequately described using the Zerilli–Armstrong <i>σ</i><sub>YS</sub> master curve (MC), the necessary data for <i>K<sub>J</sub></i><sub>c</sub> prediction are reduced to <i>σ</i><sub>YSRT</sub> and <i>σ</i><sub>BRT</sub>. The developed <i>K<sub>J</sub></i><sub>c</sub> predictor successfully predicted <i>K<sub>J</sub></i><sub>c</sub> under arbitrary conditions. Compared with the existing ASTM E1921 <i>K<sub>J</sub></i><sub>c</sub> MC, the developed <i>K<sub>J</sub></i><sub>c</sub> predictor was especially effective in cases where <i>σ</i><sub>B</sub>/<i>σ</i><sub>YS</sub> of the material was larger than that of RPV steel.Kenichi IshiharaHayato KitagawaYoichi TakagishiToshiyuki MeshiiMDPI AGarticlefracture toughnessmachine learningartificial neural networkpredictoryield stresstensile strengthMining engineering. MetallurgyTN1-997ENMetals, Vol 11, Iss 1740, p 1740 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
fracture toughness machine learning artificial neural network predictor yield stress tensile strength Mining engineering. Metallurgy TN1-997 |
spellingShingle |
fracture toughness machine learning artificial neural network predictor yield stress tensile strength Mining engineering. Metallurgy TN1-997 Kenichi Ishihara Hayato Kitagawa Yoichi Takagishi Toshiyuki Meshii Application of an Artificial Neural Network to Develop Fracture Toughness Predictor of Ferritic Steels Based on Tensile Test Results |
description |
Analyzing the structural integrity of ferritic steel structures subjected to large temperature variations requires the collection of the fracture toughness (<i>K<sub>J</sub></i><sub>c</sub>) of ferritic steels in the ductile-to-brittle transition region. Consequently, predicting <i>K<sub>J</sub></i><sub>c</sub> from minimal testing has been of interest for a long time. In this study, a Windows-ready <i>K<sub>J</sub></i><sub>c</sub> predictor based on tensile properties (specifically, yield stress σ<sub>YSRT</sub> and tensile strength <i>σ</i><sub>BRT</sub> at room temperature (RT) and <i>σ</i><sub>YS</sub> at <i>K<sub>J</sub></i><sub>c</sub> prediction temperature) was developed by applying an artificial neural network (ANN) to 531 <i>K<sub>J</sub></i><sub>c</sub> data points. If the <i>σ</i><sub>YS</sub> temperature dependence can be adequately described using the Zerilli–Armstrong <i>σ</i><sub>YS</sub> master curve (MC), the necessary data for <i>K<sub>J</sub></i><sub>c</sub> prediction are reduced to <i>σ</i><sub>YSRT</sub> and <i>σ</i><sub>BRT</sub>. The developed <i>K<sub>J</sub></i><sub>c</sub> predictor successfully predicted <i>K<sub>J</sub></i><sub>c</sub> under arbitrary conditions. Compared with the existing ASTM E1921 <i>K<sub>J</sub></i><sub>c</sub> MC, the developed <i>K<sub>J</sub></i><sub>c</sub> predictor was especially effective in cases where <i>σ</i><sub>B</sub>/<i>σ</i><sub>YS</sub> of the material was larger than that of RPV steel. |
format |
article |
author |
Kenichi Ishihara Hayato Kitagawa Yoichi Takagishi Toshiyuki Meshii |
author_facet |
Kenichi Ishihara Hayato Kitagawa Yoichi Takagishi Toshiyuki Meshii |
author_sort |
Kenichi Ishihara |
title |
Application of an Artificial Neural Network to Develop Fracture Toughness Predictor of Ferritic Steels Based on Tensile Test Results |
title_short |
Application of an Artificial Neural Network to Develop Fracture Toughness Predictor of Ferritic Steels Based on Tensile Test Results |
title_full |
Application of an Artificial Neural Network to Develop Fracture Toughness Predictor of Ferritic Steels Based on Tensile Test Results |
title_fullStr |
Application of an Artificial Neural Network to Develop Fracture Toughness Predictor of Ferritic Steels Based on Tensile Test Results |
title_full_unstemmed |
Application of an Artificial Neural Network to Develop Fracture Toughness Predictor of Ferritic Steels Based on Tensile Test Results |
title_sort |
application of an artificial neural network to develop fracture toughness predictor of ferritic steels based on tensile test results |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/6877efa5a65d4c2f999a2270a37b7b39 |
work_keys_str_mv |
AT kenichiishihara applicationofanartificialneuralnetworktodevelopfracturetoughnesspredictorofferriticsteelsbasedontensiletestresults AT hayatokitagawa applicationofanartificialneuralnetworktodevelopfracturetoughnesspredictorofferriticsteelsbasedontensiletestresults AT yoichitakagishi applicationofanartificialneuralnetworktodevelopfracturetoughnesspredictorofferriticsteelsbasedontensiletestresults AT toshiyukimeshii applicationofanartificialneuralnetworktodevelopfracturetoughnesspredictorofferriticsteelsbasedontensiletestresults |
_version_ |
1718411262562402304 |