Application of an Artificial Neural Network to Develop Fracture Toughness Predictor of Ferritic Steels Based on Tensile Test Results
Analyzing the structural integrity of ferritic steel structures subjected to large temperature variations requires the collection of the fracture toughness (<i>K<sub>J</sub></i><sub>c</sub>) of ferritic steels in the ductile-to-brittle transition region. Consequen...
Enregistré dans:
Auteurs principaux: | Kenichi Ishihara, Hayato Kitagawa, Yoichi Takagishi, Toshiyuki Meshii |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/6877efa5a65d4c2f999a2270a37b7b39 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
XFEM Simulation of Tensile and Fracture Behavior of Ultrafine-Grained Al 6061 Alloy
par: Saurabh Gairola, et autres
Publié: (2021) -
Preparation of Multiscale α Phase by Heat Treatments and Its Effect on Tensile Properties in Metastable β Titanium Alloy Sheet
par: Hanyu Jiang, et autres
Publié: (2021) -
Brittle failure criteria of CNRB specimen for fracture toughness test
par: Manato KANESAKI, et autres
Publié: (2020) -
A significant toughness enhancement, and microstructural evolution of an electric resistance welded (ERW) microalloyed steel
par: S.H. Mousavi Anijdan, et autres
Publié: (2021) -
Variations of fracture toughness and stress-strain curve of cold worked stainless steel and their influence on failure strength of cracked pipe
par: Masayuki KAMAYA
Publié: (2016)