Crowdsourcing and machine learning approaches for extracting entities indicating potential foodborne outbreaks from social media
Abstract Foodborne outbreaks are a serious but preventable threat to public health that often lead to illness, loss of life, significant economic loss, and the erosion of consumer confidence. Understanding how consumers respond when interacting with foods, as well as extracting information from post...
Guardado en:
Autores principales: | Dandan Tao, Dongyu Zhang, Ruofan Hu, Elke Rundensteiner, Hao Feng |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/687c6d57923345e88d848bcfb42e1505 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Microbiology Instruction Using Current Foodborne Outbreak Resources
por: Narveen Jandu
Publicado: (2016) -
Foodborne Illness Outbreak Investigation for One Health Postsecondary Education
por: Adrienne E. H. Shearer, et al.
Publicado: (2021) -
Phylogenetic structure of Salmonella Enteritidis provides context for a foodborne outbreak in Peru
por: Willi Quino, et al.
Publicado: (2020) -
Inactivation of a Foodborne Norovirus Outbreak Strain with Nonthermal Atmospheric Pressure Plasma
por: Birte Ahlfeld, et al.
Publicado: (2015) -
Isolation, Identification, and Antibiotic Susceptibility Testing of Salmonella Isolated from Foodborne Outbreaks
por: Mohammad Mehdi Soltan Dallal, et al.
Publicado: (2020)