Towards prediction of ordered phases in rechargeable battery chemistry via group–subgroup transformation

Abstract The electrochemical thermodynamic and kinetic characteristics of rechargeable batteries are critically influenced by the ordering of mobile ions in electrodes or solid electrolytes. However, because of the experimental difficulty of capturing the lighter migration ion coupled with the theor...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yunbing Ran, Zheyi Zou, Bo Liu, Da Wang, Bowei Pu, Penghui Mi, Wei Shi, Yajie Li, Bing He, Ziheng Lu, Xia Lu, Baihai Li, Siqi Shi
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/6886e8d1efef4a2184bb638f5313eb3e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The electrochemical thermodynamic and kinetic characteristics of rechargeable batteries are critically influenced by the ordering of mobile ions in electrodes or solid electrolytes. However, because of the experimental difficulty of capturing the lighter migration ion coupled with the theoretical limitation of searching for ordered phases in a constrained cell, predicting stable ordered phases involving cell transformations or at extremely dilute concentrations remains challenging. Here, a group-subgroup transformation method based on lattice transformation and Wyckoff-position splitting is employed to predict the ordered ground states. We reproduce the previously reported Li0. 75CoO2, Li0. 8333CoO2, and Li0.8571CoO2 phases and report a new Li0.875CoO2 ground state. Taking the advantage of Wyckoff-position splitting in reducing the number of configurations, we identify the stablest Li0.0625C6 dilute phase in Li-ion intercalated graphite. We also resolve the Li/La/vacancy ordering in Li3x La2/3−x TiO3 (0 < x < 0.167), which explains the observed Li-ion diffusion anisotropy. These findings provide important insight towards understanding the rechargeable battery chemistry.