Sensitization Towards Aerosol Optical Properties And Radiative Forcing, Real Case In Morocco

Mineral dust is one of the most important aerosol components in the Earth’s atmosphere. Desert aerosol constitute the main types of tropospheric aerosols whose optical property uncertainties are still quite important. In this study, we analyse the variability of aerosol optical depth (AOD), Angstrôm...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ssouaby Somia, Naim Hafida, Tahiri Abdelouahid, Bourekkadi Salmane
Formato: article
Lenguaje:EN
FR
Publicado: EDP Sciences 2021
Materias:
Acceso en línea:https://doaj.org/article/68928a43d4164f99a2c7068e2fb9b88c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:68928a43d4164f99a2c7068e2fb9b88c
record_format dspace
spelling oai:doaj.org-article:68928a43d4164f99a2c7068e2fb9b88c2021-12-02T17:11:27ZSensitization Towards Aerosol Optical Properties And Radiative Forcing, Real Case In Morocco2267-124210.1051/e3sconf/202131902027https://doaj.org/article/68928a43d4164f99a2c7068e2fb9b88c2021-01-01T00:00:00Zhttps://www.e3s-conferences.org/articles/e3sconf/pdf/2021/95/e3sconf_vigisan_02027.pdfhttps://doaj.org/toc/2267-1242Mineral dust is one of the most important aerosol components in the Earth’s atmosphere. Desert aerosol constitute the main types of tropospheric aerosols whose optical property uncertainties are still quite important. In this study, we analyse the variability of aerosol optical depth (AOD), Angstrôm Exponent (α), Single Scattering Albedo (ω0) and aerosol radiative forcing (ARF) of desert aerosol recent measurements, for six AERONET sites covering the belt desert areas: Ouarzazate (Morocco), Tamanrasset (Algeria), El Farafra (Egypt), Mezaira (Unites Arab Emirates), Kuwait University (Kuwait), Dalanzadgad (Mongolia). The annual cycle of the aerosol optical depth dialy averages shows variable values due to the changeable weather and the Sahara source. The highests were recorded at the Sahara site (2.2 at Tamanrasset) and (2.9 at Kuwait-University). The spectral single scattering albedo SSA annual averages varies in the interval (0,8-0.95) indicating dominant scattering. Desert aerosol radiative forcing shows always a negative ARF with a maximums registred in July, -90 W/m2 at surface (Mezaira) and -26 W/m2 at the top of the atmosphere (Kuwait) that imply a general trend towards regional warming of the total column atmosphere with a maximum near +55 W/m2 observed in July at UAE.Ssouaby SomiaNaim HafidaTahiri AbdelouahidBourekkadi SalmaneEDP SciencesarticleEnvironmental sciencesGE1-350ENFRE3S Web of Conferences, Vol 319, p 02027 (2021)
institution DOAJ
collection DOAJ
language EN
FR
topic Environmental sciences
GE1-350
spellingShingle Environmental sciences
GE1-350
Ssouaby Somia
Naim Hafida
Tahiri Abdelouahid
Bourekkadi Salmane
Sensitization Towards Aerosol Optical Properties And Radiative Forcing, Real Case In Morocco
description Mineral dust is one of the most important aerosol components in the Earth’s atmosphere. Desert aerosol constitute the main types of tropospheric aerosols whose optical property uncertainties are still quite important. In this study, we analyse the variability of aerosol optical depth (AOD), Angstrôm Exponent (α), Single Scattering Albedo (ω0) and aerosol radiative forcing (ARF) of desert aerosol recent measurements, for six AERONET sites covering the belt desert areas: Ouarzazate (Morocco), Tamanrasset (Algeria), El Farafra (Egypt), Mezaira (Unites Arab Emirates), Kuwait University (Kuwait), Dalanzadgad (Mongolia). The annual cycle of the aerosol optical depth dialy averages shows variable values due to the changeable weather and the Sahara source. The highests were recorded at the Sahara site (2.2 at Tamanrasset) and (2.9 at Kuwait-University). The spectral single scattering albedo SSA annual averages varies in the interval (0,8-0.95) indicating dominant scattering. Desert aerosol radiative forcing shows always a negative ARF with a maximums registred in July, -90 W/m2 at surface (Mezaira) and -26 W/m2 at the top of the atmosphere (Kuwait) that imply a general trend towards regional warming of the total column atmosphere with a maximum near +55 W/m2 observed in July at UAE.
format article
author Ssouaby Somia
Naim Hafida
Tahiri Abdelouahid
Bourekkadi Salmane
author_facet Ssouaby Somia
Naim Hafida
Tahiri Abdelouahid
Bourekkadi Salmane
author_sort Ssouaby Somia
title Sensitization Towards Aerosol Optical Properties And Radiative Forcing, Real Case In Morocco
title_short Sensitization Towards Aerosol Optical Properties And Radiative Forcing, Real Case In Morocco
title_full Sensitization Towards Aerosol Optical Properties And Radiative Forcing, Real Case In Morocco
title_fullStr Sensitization Towards Aerosol Optical Properties And Radiative Forcing, Real Case In Morocco
title_full_unstemmed Sensitization Towards Aerosol Optical Properties And Radiative Forcing, Real Case In Morocco
title_sort sensitization towards aerosol optical properties and radiative forcing, real case in morocco
publisher EDP Sciences
publishDate 2021
url https://doaj.org/article/68928a43d4164f99a2c7068e2fb9b88c
work_keys_str_mv AT ssouabysomia sensitizationtowardsaerosolopticalpropertiesandradiativeforcingrealcaseinmorocco
AT naimhafida sensitizationtowardsaerosolopticalpropertiesandradiativeforcingrealcaseinmorocco
AT tahiriabdelouahid sensitizationtowardsaerosolopticalpropertiesandradiativeforcingrealcaseinmorocco
AT bourekkadisalmane sensitizationtowardsaerosolopticalpropertiesandradiativeforcingrealcaseinmorocco
_version_ 1718381501742055424