Machine learning of high dimensional data on a noisy quantum processor
Abstract Quantum kernel methods show promise for accelerating data analysis by efficiently learning relationships between input data points that have been encoded into an exponentially large Hilbert space. While this technique has been used successfully in small-scale experiments on synthetic datase...
Guardado en:
Autores principales: | Evan Peters, João Caldeira, Alan Ho, Stefan Leichenauer, Masoud Mohseni, Hartmut Neven, Panagiotis Spentzouris, Doug Strain, Gabriel N. Perdue |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/68962ca062724054a7cdabe34f6649a1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Optimizing a polynomial function on a quantum processor
por: Keren Li, et al.
Publicado: (2021) -
Low-rank density-matrix evolution for noisy quantum circuits
por: Yi-Ting Chen, et al.
Publicado: (2021) -
SMARTdenovo: a de novo assembler using long noisy reads
por: Hailin Liu, et al.
Publicado: (2021) -
A phononic interface between a superconducting quantum processor and quantum networked spin memories
por: Tomáš Neuman, et al.
Publicado: (2021) -
Optimal teleportation via noisy quantum channels without additional qubit resources
por: Dong-Gil Im, et al.
Publicado: (2021)