Pre-existing and machine learning-based models for cardiovascular risk prediction
Abstract Predicting the risk of cardiovascular disease is the key to primary prevention. Machine learning has attracted attention in analyzing increasingly large, complex healthcare data. We assessed discrimination and calibration of pre-existing cardiovascular risk prediction models and developed m...
Guardado en:
Autores principales: | Sang-Yeong Cho, Sun-Hwa Kim, Si-Hyuck Kang, Kyong Joon Lee, Dongjun Choi, Seungjin Kang, Sang Jun Park, Tackeun Kim, Chang-Hwan Yoon, Tae-Jin Youn, In-Ho Chae |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/68aaa9b55dd04e6aa28fd62a172d6c4e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Management of cardiovascular disease using an mHealth tool: a randomized clinical trial
por: Si-Hyuck Kang, et al.
Publicado: (2021) -
Publisher Correction: Upregulation of prefrontal metabotropic glutamate receptor 5 mediates neuropathic pain and negative mood symptoms after spinal nerve injury in rats
por: Geehoon Chung, et al.
Publicado: (2018) -
Pre-existing cardiovascular disease increases risk of atrial arrhythmia and mortality in cancer patients treated with Ibrutinib
por: Juan Carlo Avalon, et al.
Publicado: (2021) -
Content validity of the tinnitus outcome questionnaire for sound management.
por: Hye Yoon Seol, et al.
Publicado: (2021) -
Predictive value of pre-arrest albumin level with GO-FAR score in patients with in-hospital cardiac arrest
por: Seok-In Hong, et al.
Publicado: (2021)