Allostery of atypical modulators at oligomeric G protein-coupled receptors
Abstract Many G protein-coupled receptors (GPCRs) are therapeutic targets, with most drugs acting at the orthosteric site. Some GPCRs also possess allosteric sites, which have become a focus of drug discovery. In the M2 muscarinic receptor, allosteric modulators regulate the binding and functional e...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/68b8f45abdf448c890100bc734c1f038 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:68b8f45abdf448c890100bc734c1f038 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:68b8f45abdf448c890100bc734c1f0382021-12-02T17:39:19ZAllostery of atypical modulators at oligomeric G protein-coupled receptors10.1038/s41598-021-88399-x2045-2322https://doaj.org/article/68b8f45abdf448c890100bc734c1f0382021-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-88399-xhttps://doaj.org/toc/2045-2322Abstract Many G protein-coupled receptors (GPCRs) are therapeutic targets, with most drugs acting at the orthosteric site. Some GPCRs also possess allosteric sites, which have become a focus of drug discovery. In the M2 muscarinic receptor, allosteric modulators regulate the binding and functional effects of orthosteric ligands through a mix of conformational changes, steric hindrance and electrostatic repulsion transmitted within and between the constituent protomers of an oligomer. Tacrine has been called an atypical modulator because it exhibits positive cooperativity, as revealed by Hill coefficients greater than 1 in its negative allosteric effect on binding and response. Radioligand binding and molecular dynamics simulations were used to probe the mechanism of that modulation in monomers and oligomers of wild-type and mutant M2 receptors. Tacrine is not atypical at monomers, which indicates that its atypical effects are a property of the receptor in its oligomeric state. These results illustrate that oligomerization of the M2 receptor has functional consequences.Rabindra V. ShivnaraineBrendan KellyGwendolynne ElmslieXi-Ping HuangYue John DongMargaret SeidenbergJames W. WellsJohn EllisNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-15 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Rabindra V. Shivnaraine Brendan Kelly Gwendolynne Elmslie Xi-Ping Huang Yue John Dong Margaret Seidenberg James W. Wells John Ellis Allostery of atypical modulators at oligomeric G protein-coupled receptors |
description |
Abstract Many G protein-coupled receptors (GPCRs) are therapeutic targets, with most drugs acting at the orthosteric site. Some GPCRs also possess allosteric sites, which have become a focus of drug discovery. In the M2 muscarinic receptor, allosteric modulators regulate the binding and functional effects of orthosteric ligands through a mix of conformational changes, steric hindrance and electrostatic repulsion transmitted within and between the constituent protomers of an oligomer. Tacrine has been called an atypical modulator because it exhibits positive cooperativity, as revealed by Hill coefficients greater than 1 in its negative allosteric effect on binding and response. Radioligand binding and molecular dynamics simulations were used to probe the mechanism of that modulation in monomers and oligomers of wild-type and mutant M2 receptors. Tacrine is not atypical at monomers, which indicates that its atypical effects are a property of the receptor in its oligomeric state. These results illustrate that oligomerization of the M2 receptor has functional consequences. |
format |
article |
author |
Rabindra V. Shivnaraine Brendan Kelly Gwendolynne Elmslie Xi-Ping Huang Yue John Dong Margaret Seidenberg James W. Wells John Ellis |
author_facet |
Rabindra V. Shivnaraine Brendan Kelly Gwendolynne Elmslie Xi-Ping Huang Yue John Dong Margaret Seidenberg James W. Wells John Ellis |
author_sort |
Rabindra V. Shivnaraine |
title |
Allostery of atypical modulators at oligomeric G protein-coupled receptors |
title_short |
Allostery of atypical modulators at oligomeric G protein-coupled receptors |
title_full |
Allostery of atypical modulators at oligomeric G protein-coupled receptors |
title_fullStr |
Allostery of atypical modulators at oligomeric G protein-coupled receptors |
title_full_unstemmed |
Allostery of atypical modulators at oligomeric G protein-coupled receptors |
title_sort |
allostery of atypical modulators at oligomeric g protein-coupled receptors |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/68b8f45abdf448c890100bc734c1f038 |
work_keys_str_mv |
AT rabindravshivnaraine allosteryofatypicalmodulatorsatoligomericgproteincoupledreceptors AT brendankelly allosteryofatypicalmodulatorsatoligomericgproteincoupledreceptors AT gwendolynneelmslie allosteryofatypicalmodulatorsatoligomericgproteincoupledreceptors AT xipinghuang allosteryofatypicalmodulatorsatoligomericgproteincoupledreceptors AT yuejohndong allosteryofatypicalmodulatorsatoligomericgproteincoupledreceptors AT margaretseidenberg allosteryofatypicalmodulatorsatoligomericgproteincoupledreceptors AT jameswwells allosteryofatypicalmodulatorsatoligomericgproteincoupledreceptors AT johnellis allosteryofatypicalmodulatorsatoligomericgproteincoupledreceptors |
_version_ |
1718379827035111424 |