Exploring Machine Learning Techniques to Predict the Response to Omalizumab in Chronic Spontaneous Urticaria
Background: Omalizumab is the best treatment for patients with chronic spontaneous urticaria (CSU). Machine learning (ML) approaches can be used to predict response to therapy and the effectiveness of a treatment. No studies are available on the use of ML techniques to predict the response to Omaliz...
Guardado en:
Autores principales: | Davide Stefano Sardina, Giuseppe Valenti, Francesco Papia, Carina Gabriela Uasuf |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/68bf52e54d32483f949bae14eb2ff421 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Two decades with omalizumab: what we still have to learn
por: Incorvaia C, et al.
Publicado: (2018) -
Anticuerpo monoclonal anti-inmunoglobulina E en el tratamiento de la rinitis alérgica
por: Naser G,Alfredo, et al.
Publicado: (2011) -
Rapid transition to home omalizumab treatment for chronic spontaneous urticaria during the COVID-19 pandemic: A patient perspective
por: Catherine King, et al.
Publicado: (2021) -
Biomarkers of Gut Microbiota in Chronic Spontaneous Urticaria and Symptomatic Dermographism
por: Runqiu Liu, et al.
Publicado: (2021) -
Comparative efficacy of bilastine, levocetirizine and desloratadine updosing in chronic urticaria
por: Staevska MT
Publicado: (2016)