Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein.
Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interf...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/68e798ffdedb4154898c30314604fbb4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:68e798ffdedb4154898c30314604fbb4 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:68e798ffdedb4154898c30314604fbb42021-11-18T06:06:18ZSpecies-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein.1553-73661553-737410.1371/journal.ppat.1003059https://doaj.org/article/68e798ffdedb4154898c30314604fbb42012-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23209422/?tool=EBIhttps://doaj.org/toc/1553-7366https://doaj.org/toc/1553-7374Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production.Ricardo RajsbaumRandy A AlbrechtMay K WangNatalya P MaharajGijs A VersteegEstanislao Nistal-VillánAdolfo García-SastreMichaela U GackPublic Library of Science (PLoS)articleImmunologic diseases. AllergyRC581-607Biology (General)QH301-705.5ENPLoS Pathogens, Vol 8, Iss 11, p e1003059 (2012) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Immunologic diseases. Allergy RC581-607 Biology (General) QH301-705.5 |
spellingShingle |
Immunologic diseases. Allergy RC581-607 Biology (General) QH301-705.5 Ricardo Rajsbaum Randy A Albrecht May K Wang Natalya P Maharaj Gijs A Versteeg Estanislao Nistal-Villán Adolfo García-Sastre Michaela U Gack Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein. |
description |
Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production. |
format |
article |
author |
Ricardo Rajsbaum Randy A Albrecht May K Wang Natalya P Maharaj Gijs A Versteeg Estanislao Nistal-Villán Adolfo García-Sastre Michaela U Gack |
author_facet |
Ricardo Rajsbaum Randy A Albrecht May K Wang Natalya P Maharaj Gijs A Versteeg Estanislao Nistal-Villán Adolfo García-Sastre Michaela U Gack |
author_sort |
Ricardo Rajsbaum |
title |
Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein. |
title_short |
Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein. |
title_full |
Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein. |
title_fullStr |
Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein. |
title_full_unstemmed |
Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein. |
title_sort |
species-specific inhibition of rig-i ubiquitination and ifn induction by the influenza a virus ns1 protein. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2012 |
url |
https://doaj.org/article/68e798ffdedb4154898c30314604fbb4 |
work_keys_str_mv |
AT ricardorajsbaum speciesspecificinhibitionofrigiubiquitinationandifninductionbytheinfluenzaavirusns1protein AT randyaalbrecht speciesspecificinhibitionofrigiubiquitinationandifninductionbytheinfluenzaavirusns1protein AT maykwang speciesspecificinhibitionofrigiubiquitinationandifninductionbytheinfluenzaavirusns1protein AT natalyapmaharaj speciesspecificinhibitionofrigiubiquitinationandifninductionbytheinfluenzaavirusns1protein AT gijsaversteeg speciesspecificinhibitionofrigiubiquitinationandifninductionbytheinfluenzaavirusns1protein AT estanislaonistalvillan speciesspecificinhibitionofrigiubiquitinationandifninductionbytheinfluenzaavirusns1protein AT adolfogarciasastre speciesspecificinhibitionofrigiubiquitinationandifninductionbytheinfluenzaavirusns1protein AT michaelaugack speciesspecificinhibitionofrigiubiquitinationandifninductionbytheinfluenzaavirusns1protein |
_version_ |
1718424542031904768 |