A Novel Artificial Neuron-Like Gas Sensor Constructed from CuS Quantum Dots/Bi2S3 Nanosheets
Abstract Real-time rapid detection of toxic gases at room temperature is particularly important for public health and environmental monitoring. Gas sensors based on conventional bulk materials often suffer from their poor surface-sensitive sites, leading to a very low gas adsorption ability. Moreove...
Guardado en:
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/68ea06a9952240c9bdfc50c066cde971 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Real-time rapid detection of toxic gases at room temperature is particularly important for public health and environmental monitoring. Gas sensors based on conventional bulk materials often suffer from their poor surface-sensitive sites, leading to a very low gas adsorption ability. Moreover, the charge transportation efficiency is usually inhibited by the low defect density of surface-sensitive area than that in the interior. In this work, a gas sensing structure model based on CuS quantum dots/Bi2S3 nanosheets (CuS QDs/Bi2S3 NSs) inspired by artificial neuron network is constructed. Simulation analysis by density functional calculation revealed that CuS QDs and Bi2S3 NSs can be used as the main adsorption sites and charge transport pathways, respectively. Thus, the high-sensitivity sensing of NO2 can be realized by designing the artificial neuron-like sensor. The experimental results showed that the CuS QDs with a size of about 8 nm are highly adsorbable, which can enhance the NO2 sensitivity due to the rich sensitive sites and quantum size effect. The Bi2S3 NSs can be used as a charge transfer network channel to achieve efficient charge collection and transmission. The neuron-like sensor that simulates biological smell shows a significantly enhanced response value (3.4), excellent responsiveness (18 s) and recovery rate (338 s), low theoretical detection limit of 78 ppb, and excellent selectivity for NO2. Furthermore, the developed wearable device can also realize the visual detection of NO2 through real-time signal changes. |
---|