Binless normalization of Hi-C data provides significant interaction and difference detection independent of resolution

Analysis of Hi-C datasets is limited by the current existing methods for data normalization, with detection of features such as TADs and chromatin loops being inconsistent amongst different approaches. Here the authors develop Binless, a method that allows for reproducible normalization of Hi-C data...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yannick G. Spill, David Castillo, Enrique Vidal, Marc A. Marti-Renom
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/68f2d8d52dec41c0a48e547768b92e81
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Analysis of Hi-C datasets is limited by the current existing methods for data normalization, with detection of features such as TADs and chromatin loops being inconsistent amongst different approaches. Here the authors develop Binless, a method that allows for reproducible normalization of Hi-C data independent of its resolution and compare how Binless performs in comparison with other methods.