Binless normalization of Hi-C data provides significant interaction and difference detection independent of resolution

Analysis of Hi-C datasets is limited by the current existing methods for data normalization, with detection of features such as TADs and chromatin loops being inconsistent amongst different approaches. Here the authors develop Binless, a method that allows for reproducible normalization of Hi-C data...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yannick G. Spill, David Castillo, Enrique Vidal, Marc A. Marti-Renom
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/68f2d8d52dec41c0a48e547768b92e81
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:68f2d8d52dec41c0a48e547768b92e81
record_format dspace
spelling oai:doaj.org-article:68f2d8d52dec41c0a48e547768b92e812021-12-02T16:57:53ZBinless normalization of Hi-C data provides significant interaction and difference detection independent of resolution10.1038/s41467-019-09907-22041-1723https://doaj.org/article/68f2d8d52dec41c0a48e547768b92e812019-04-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-09907-2https://doaj.org/toc/2041-1723Analysis of Hi-C datasets is limited by the current existing methods for data normalization, with detection of features such as TADs and chromatin loops being inconsistent amongst different approaches. Here the authors develop Binless, a method that allows for reproducible normalization of Hi-C data independent of its resolution and compare how Binless performs in comparison with other methods.Yannick G. SpillDavid CastilloEnrique VidalMarc A. Marti-RenomNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-10 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Yannick G. Spill
David Castillo
Enrique Vidal
Marc A. Marti-Renom
Binless normalization of Hi-C data provides significant interaction and difference detection independent of resolution
description Analysis of Hi-C datasets is limited by the current existing methods for data normalization, with detection of features such as TADs and chromatin loops being inconsistent amongst different approaches. Here the authors develop Binless, a method that allows for reproducible normalization of Hi-C data independent of its resolution and compare how Binless performs in comparison with other methods.
format article
author Yannick G. Spill
David Castillo
Enrique Vidal
Marc A. Marti-Renom
author_facet Yannick G. Spill
David Castillo
Enrique Vidal
Marc A. Marti-Renom
author_sort Yannick G. Spill
title Binless normalization of Hi-C data provides significant interaction and difference detection independent of resolution
title_short Binless normalization of Hi-C data provides significant interaction and difference detection independent of resolution
title_full Binless normalization of Hi-C data provides significant interaction and difference detection independent of resolution
title_fullStr Binless normalization of Hi-C data provides significant interaction and difference detection independent of resolution
title_full_unstemmed Binless normalization of Hi-C data provides significant interaction and difference detection independent of resolution
title_sort binless normalization of hi-c data provides significant interaction and difference detection independent of resolution
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/68f2d8d52dec41c0a48e547768b92e81
work_keys_str_mv AT yannickgspill binlessnormalizationofhicdataprovidessignificantinteractionanddifferencedetectionindependentofresolution
AT davidcastillo binlessnormalizationofhicdataprovidessignificantinteractionanddifferencedetectionindependentofresolution
AT enriquevidal binlessnormalizationofhicdataprovidessignificantinteractionanddifferencedetectionindependentofresolution
AT marcamartirenom binlessnormalizationofhicdataprovidessignificantinteractionanddifferencedetectionindependentofresolution
_version_ 1718382449494327296