Binless normalization of Hi-C data provides significant interaction and difference detection independent of resolution
Analysis of Hi-C datasets is limited by the current existing methods for data normalization, with detection of features such as TADs and chromatin loops being inconsistent amongst different approaches. Here the authors develop Binless, a method that allows for reproducible normalization of Hi-C data...
Guardado en:
Autores principales: | Yannick G. Spill, David Castillo, Enrique Vidal, Marc A. Marti-Renom |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/68f2d8d52dec41c0a48e547768b92e81 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data
por: Mark Carty, et al.
Publicado: (2017) -
In silico prediction of high-resolution Hi-C interaction matrices
por: Shilu Zhang, et al.
Publicado: (2019) -
Identification of significant chromatin contacts from HiChIP data by FitHiChIP
por: Sourya Bhattacharyya, et al.
Publicado: (2019) -
Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus
por: Yan Zhang, et al.
Publicado: (2018) -
HiC-DC+ enables systematic 3D interaction calls and differential analysis for Hi-C and HiChIP
por: Merve Sahin, et al.
Publicado: (2021)