Binless normalization of Hi-C data provides significant interaction and difference detection independent of resolution
Analysis of Hi-C datasets is limited by the current existing methods for data normalization, with detection of features such as TADs and chromatin loops being inconsistent amongst different approaches. Here the authors develop Binless, a method that allows for reproducible normalization of Hi-C data...
Enregistré dans:
Auteurs principaux: | Yannick G. Spill, David Castillo, Enrique Vidal, Marc A. Marti-Renom |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/68f2d8d52dec41c0a48e547768b92e81 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data
par: Mark Carty, et autres
Publié: (2017) -
In silico prediction of high-resolution Hi-C interaction matrices
par: Shilu Zhang, et autres
Publié: (2019) -
Identification of significant chromatin contacts from HiChIP data by FitHiChIP
par: Sourya Bhattacharyya, et autres
Publié: (2019) -
Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus
par: Yan Zhang, et autres
Publié: (2018) -
HiC-DC+ enables systematic 3D interaction calls and differential analysis for Hi-C and HiChIP
par: Merve Sahin, et autres
Publié: (2021)