Medical Image Captioning Model to Convey More Details: Methodological Comparison of Feature Difference Generation
The steadily increasing number of medical images places a tremendous burden on doctors, who toned to read and write reports. If an image captioning model could generate drafts of the reports from the corresponding images, the workload of doctors would be reduced, thereby saving time and expenses. Th...
Guardado en:
Autores principales: | Hyeryun Park, Kyungmo Kim, Seongkeun Park, Jinwook Choi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/68fe8108a9294323ba0ffd40f0ef10a5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Systematic Survey of Remote Sensing Image Captioning
por: Beigeng Zhao
Publicado: (2021) -
A Sparse Transformer-Based Approach for Image Captioning
por: Zhou Lei, et al.
Publicado: (2020) -
A Scientometric Visualization Analysis of Image Captioning Research From 2010 to 2020
por: Wenxuan Liu, et al.
Publicado: (2021) -
Self-Supervised Deep Convolutional Neural Network for Chest X-Ray Classification
por: Matej Gazda, et al.
Publicado: (2021) -
Requirements and needs for captioning audio-visual content for deaf and hard of hearing pupils
por: Radovanović Vesna S., et al.
Publicado: (2021)