FEM: mining biological meaning from cell level in single-cell RNA sequencing data
Background One goal of expression data analysis is to discover the biological significance or function of genes that are differentially expressed. Gene Set Enrichment (GSE) analysis is one of the main tools for function mining that has been widely used. However, every gene expressed in a cell is val...
Guardado en:
Autores principales: | Yunqing Liu, Na Lu, Changwei Bi, Tingyu Han, Guo Zhuojun, Yunchi Zhu, Yixin Li, Chunpeng He, Zuhong Lu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6903d3e9920b448798549a3635d4c60d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A strategy to identify genomic expression at single-cell level or a small number of cells
por: Li,Biaoru
Publicado: (2005) -
Single-Cell Transcriptomics Reveals the Expression of Aging- and Senescence-Associated Genes in Distinct Cancer Cell Populations
por: Dominik Saul, et al.
Publicado: (2021) -
Full-Length Transcriptomics Reveal the Gene Expression Profiles of Reef-Building Coral <i>Pocillopora damicornis</i> and Symbiont Zooxanthellae
por: Zhuojun Guo, et al.
Publicado: (2021) -
Bipolar quadripartitioned single valued neutrosophic sets
por: Sinha,Kalyan, et al.
Publicado: (2020) -
Gene Expression Profiles Suggest a Better Cold Acclimation of Polyploids in the Alpine Species <i>Ranunculus kuepferi</i> (Ranunculaceae)
por: Eleni Syngelaki, et al.
Publicado: (2021)