An Energy-Efficient Edge Computing Paradigm for Convolution-Based Image Upsampling
State-of-the-art deep learning solutions for image upsampling are currently trained using either resize or sub-pixel convolution to learn kernels that generate high fidelity images with minimal artifacts. However, performing inference with these learned convolution kernels requires memory-intensive...
Guardado en:
Autores principales: | Ian Colbert, Kenneth Kreutz-Delgado, Srinjoy Das |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6918181698ef4588b0398f020c59e7d9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Noise-Robust MRI Upsampling Using Adaptive Local Steering Kernel
por: Jing Hu, et al.
Publicado: (2020) -
Development and Prospect of Edge Intelligence for Industrial Internet
por: Ren Yaodanjun, et al.
Publicado: (2021) -
PECSA: Practical Edge Computing Service Architecture Applicable to Adaptive IoT-Based Applications
por: Jianhua Liu, et al.
Publicado: (2021) -
Modeling of a Generic Edge Computing Application Design
por: Pedro Juan Roig, et al.
Publicado: (2021) -
On the Exploitation of 5G Multi-Access Edge Computing for Spatial Audio in Cultural Heritage Applications
por: Claudia Rinaldi, et al.
Publicado: (2021)