Recalibration of deep learning models for abnormality detection in smartphone-captured chest radiograph

Abstract Image-based teleconsultation using smartphones has become increasingly popular. In parallel, deep learning algorithms have been developed to detect radiological findings in chest X-rays (CXRs). However, the feasibility of using smartphones to automate this process has yet to be evaluated. T...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Po-Chih Kuo, Cheng Che Tsai, Diego M. López, Alexandros Karargyris, Tom J. Pollard, Alistair E. W. Johnson, Leo Anthony Celi
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/69292020cb6c4ee48dd996efb58bb8fb
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Image-based teleconsultation using smartphones has become increasingly popular. In parallel, deep learning algorithms have been developed to detect radiological findings in chest X-rays (CXRs). However, the feasibility of using smartphones to automate this process has yet to be evaluated. This study developed a recalibration method to build deep learning models to detect radiological findings on CXR photographs. Two publicly available databases (MIMIC-CXR and CheXpert) were used to build the models, and four derivative datasets containing 6453 CXR photographs were collected to evaluate model performance. After recalibration, the model achieved areas under the receiver operating characteristic curve of 0.80 (95% confidence interval: 0.78–0.82), 0.88 (0.86–0.90), 0.81 (0.79–0.84), 0.79 (0.77–0.81), 0.84 (0.80–0.88), and 0.90 (0.88–0.92), respectively, for detecting cardiomegaly, edema, consolidation, atelectasis, pneumothorax, and pleural effusion. The recalibration strategy, respectively, recovered 84.9%, 83.5%, 53.2%, 57.8%, 69.9%, and 83.0% of performance losses of the uncalibrated model. We conclude that the recalibration method can transfer models from digital CXRs to CXR photographs, which is expected to help physicians’ clinical works.