Joint representation of color and form in convolutional neural networks: A stimulus-rich network perspective.
To interact with real-world objects, any effective visual system must jointly code the unique features defining each object. Despite decades of neuroscience research, we still lack a firm grasp on how the primate brain binds visual features. Here we apply a novel network-based stimulus-rich represen...
Guardado en:
Autores principales: | JohnMark Taylor, Yaoda Xu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/69297f41643541489609fdbcc26b45e4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Limits to visual representational correspondence between convolutional neural networks and the human brain
por: Yaoda Xu, et al.
Publicado: (2021) -
Publisher Correction: Limits to visual representational correspondence between convolutional neural networks and the human brain
por: Yaoda Xu, et al.
Publicado: (2021) -
Representation of features as images with neighborhood dependencies for compatibility with convolutional neural networks
por: Omid Bazgir, et al.
Publicado: (2020) -
Cumulative learning enables convolutional neural network representations for small mass spectrometry data classification
por: Khawla Seddiki, et al.
Publicado: (2020) -
Research on improved convolutional wavelet neural network
por: Jingwei Liu, et al.
Publicado: (2021)