Identifying disease-gene associations using a convolutional neural network-based model by embedding a biological knowledge graph with entity descriptions.
Understanding the role of genes in human disease is of high importance. However, identifying genes associated with human diseases requires laborious experiments that involve considerable effort and time. Therefore, a computational approach to predict candidate genes related to complex diseases inclu...
Enregistré dans:
Auteurs principaux: | Wonjun Choi, Hyunju Lee |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/6942b3709938425c8b9d4d00f5aa23a2 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Graph convolutional and attention models for entity classification in multilayer networks
par: Lorenzo Zangari, et autres
Publié: (2021) -
MSGCN: Multi-Subgraph Based Heterogeneous Graph Convolution Network Embedding
par: Junhui Chen, et autres
Publié: (2021) -
EOESGC: predicting miRNA-disease associations based on embedding of embedding and simplified graph convolutional network
par: Shanchen Pang, et autres
Publié: (2021) -
Leveraging graph-based hierarchical medical entity embedding for healthcare applications
par: Tong Wu, et autres
Publié: (2021) -
Compressing deep graph convolution network with multi-staged knowledge distillation.
par: Junghun Kim, et autres
Publié: (2021)