Identifying disease-gene associations using a convolutional neural network-based model by embedding a biological knowledge graph with entity descriptions.
Understanding the role of genes in human disease is of high importance. However, identifying genes associated with human diseases requires laborious experiments that involve considerable effort and time. Therefore, a computational approach to predict candidate genes related to complex diseases inclu...
Guardado en:
Autores principales: | Wonjun Choi, Hyunju Lee |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6942b3709938425c8b9d4d00f5aa23a2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Graph convolutional and attention models for entity classification in multilayer networks
por: Lorenzo Zangari, et al.
Publicado: (2021) -
MSGCN: Multi-Subgraph Based Heterogeneous Graph Convolution Network Embedding
por: Junhui Chen, et al.
Publicado: (2021) -
EOESGC: predicting miRNA-disease associations based on embedding of embedding and simplified graph convolutional network
por: Shanchen Pang, et al.
Publicado: (2021) -
Leveraging graph-based hierarchical medical entity embedding for healthcare applications
por: Tong Wu, et al.
Publicado: (2021) -
Compressing deep graph convolution network with multi-staged knowledge distillation.
por: Junghun Kim, et al.
Publicado: (2021)