Design and evaluation of a novel approach to invisible electrocardiography (ECG) in sanitary facilities using polymeric electrodes

Abstract Multiple wearable devices for cardiovascular self-monitoring have been proposed over the years, with growing evidence showing their effectiveness in the detection of pathologies that would otherwise be unnoticed through standard routine exams. In particular, Electrocardiography (ECG) has be...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Aline dos Santos Silva, Hugo Almeida, Hugo Plácido da Silva, António Oliveira
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/6947ab2523354db88d1501057ff0c79c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6947ab2523354db88d1501057ff0c79c
record_format dspace
spelling oai:doaj.org-article:6947ab2523354db88d1501057ff0c79c2021-12-02T16:30:37ZDesign and evaluation of a novel approach to invisible electrocardiography (ECG) in sanitary facilities using polymeric electrodes10.1038/s41598-021-85697-22045-2322https://doaj.org/article/6947ab2523354db88d1501057ff0c79c2021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-85697-2https://doaj.org/toc/2045-2322Abstract Multiple wearable devices for cardiovascular self-monitoring have been proposed over the years, with growing evidence showing their effectiveness in the detection of pathologies that would otherwise be unnoticed through standard routine exams. In particular, Electrocardiography (ECG) has been an important tool for such purpose. However, wearables have known limitations, chief among which are the need for a voluntary action so that the ECG trace can be taken, battery lifetime, and abandonment. To effectively address these, novel solutions are needed, which has recently paved the way for “invisible” (aka “off-the-person”) sensing approaches. In this article we describe the design and experimental evaluation of a system for invisible ECG monitoring at home. For this purpose, a new sensor design was proposed, novel materials have been explored, and a proof-of-concept data collection system was created in the form of a toilet seat, enabling ECG measurements as an extension of the regular use of sanitary facilities, without requiring body-worn devices. In order to evaluate the proposed approach, measurements were performed using our system and a gold standard equipment, involving 10 healthy subjects. For the acquisition of the ECG signals on the toilet seat, polymeric electrodes with different textures were produced and tested. According to the results obtained, some of the textures did not allow the acquisition of signals in all users. However, a pyramidal texture showed the best results in relation to heart rate and ECG waveform morphology. For a texture that has shown 0% signal loss, the mean heart rate difference between the reference and experimental device was − 1.778 ± 4.654 Beats per minute (BPM); in terms of ECG waveform, the best cases present a Pearson correlation coefficient above 0.99.Aline dos Santos SilvaHugo AlmeidaHugo Plácido da SilvaAntónio OliveiraNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Aline dos Santos Silva
Hugo Almeida
Hugo Plácido da Silva
António Oliveira
Design and evaluation of a novel approach to invisible electrocardiography (ECG) in sanitary facilities using polymeric electrodes
description Abstract Multiple wearable devices for cardiovascular self-monitoring have been proposed over the years, with growing evidence showing their effectiveness in the detection of pathologies that would otherwise be unnoticed through standard routine exams. In particular, Electrocardiography (ECG) has been an important tool for such purpose. However, wearables have known limitations, chief among which are the need for a voluntary action so that the ECG trace can be taken, battery lifetime, and abandonment. To effectively address these, novel solutions are needed, which has recently paved the way for “invisible” (aka “off-the-person”) sensing approaches. In this article we describe the design and experimental evaluation of a system for invisible ECG monitoring at home. For this purpose, a new sensor design was proposed, novel materials have been explored, and a proof-of-concept data collection system was created in the form of a toilet seat, enabling ECG measurements as an extension of the regular use of sanitary facilities, without requiring body-worn devices. In order to evaluate the proposed approach, measurements were performed using our system and a gold standard equipment, involving 10 healthy subjects. For the acquisition of the ECG signals on the toilet seat, polymeric electrodes with different textures were produced and tested. According to the results obtained, some of the textures did not allow the acquisition of signals in all users. However, a pyramidal texture showed the best results in relation to heart rate and ECG waveform morphology. For a texture that has shown 0% signal loss, the mean heart rate difference between the reference and experimental device was − 1.778 ± 4.654 Beats per minute (BPM); in terms of ECG waveform, the best cases present a Pearson correlation coefficient above 0.99.
format article
author Aline dos Santos Silva
Hugo Almeida
Hugo Plácido da Silva
António Oliveira
author_facet Aline dos Santos Silva
Hugo Almeida
Hugo Plácido da Silva
António Oliveira
author_sort Aline dos Santos Silva
title Design and evaluation of a novel approach to invisible electrocardiography (ECG) in sanitary facilities using polymeric electrodes
title_short Design and evaluation of a novel approach to invisible electrocardiography (ECG) in sanitary facilities using polymeric electrodes
title_full Design and evaluation of a novel approach to invisible electrocardiography (ECG) in sanitary facilities using polymeric electrodes
title_fullStr Design and evaluation of a novel approach to invisible electrocardiography (ECG) in sanitary facilities using polymeric electrodes
title_full_unstemmed Design and evaluation of a novel approach to invisible electrocardiography (ECG) in sanitary facilities using polymeric electrodes
title_sort design and evaluation of a novel approach to invisible electrocardiography (ecg) in sanitary facilities using polymeric electrodes
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/6947ab2523354db88d1501057ff0c79c
work_keys_str_mv AT alinedossantossilva designandevaluationofanovelapproachtoinvisibleelectrocardiographyecginsanitaryfacilitiesusingpolymericelectrodes
AT hugoalmeida designandevaluationofanovelapproachtoinvisibleelectrocardiographyecginsanitaryfacilitiesusingpolymericelectrodes
AT hugoplacidodasilva designandevaluationofanovelapproachtoinvisibleelectrocardiographyecginsanitaryfacilitiesusingpolymericelectrodes
AT antoniooliveira designandevaluationofanovelapproachtoinvisibleelectrocardiographyecginsanitaryfacilitiesusingpolymericelectrodes
_version_ 1718383934822154240