Author Correction: Low-count whole-body PET with deep learning in a multicenter and externally validated study
Enregistré dans:
Auteurs principaux: | Akshay S. Chaudhari, Erik Mittra, Guido A. Davidzon, Praveen Gulaka, Harsh Gandhi, Adam Brown, Tao Zhang, Shyam Srinivas, Enhao Gong, Greg Zaharchuk, Hossein Jadvar |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/694b64e18fc1473c8c71444dcdab9b6e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Low-count whole-body PET with deep learning in a multicenter and externally validated study
par: Akshay S. Chaudhari, et autres
Publié: (2021) -
Multi-task weak supervision enables anatomically-resolved abnormality detection in whole-body FDG-PET/CT
par: Sabri Eyuboglu, et autres
Publié: (2021) -
Usefulness of semi-automatic harmonization strategy of standardized uptake values for multicenter PET studies
par: Hiromitsu Daisaki, et autres
Publié: (2021) -
68Ga-PSMA11 PET/CT for biochemically recurrent prostate cancer: Influence of dual-time and PMT- vs SiPM-based detectors
par: Heying Duan, et autres
Publié: (2022) -
Automated coronary calcium scoring using deep learning with multicenter external validation
par: David Eng, et autres
Publié: (2021)