MSGCN: Multi-Subgraph Based Heterogeneous Graph Convolution Network Embedding
Heterogeneous graph embedding has become a hot topic in network embedding in recent years and has been widely used in lots of practical scenarios. However, most of the existing heterogeneous graph embedding methods cannot make full use of all the auxiliary information. So we proposed a new method ca...
Guardado en:
Autores principales: | Junhui Chen, Feihu Huang, Jian Peng |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/694c78e515ed4c728d316953e42b62f9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
EOESGC: predicting miRNA-disease associations based on embedding of embedding and simplified graph convolutional network
por: Shanchen Pang, et al.
Publicado: (2021) -
Sentence Compression Using BERT and Graph Convolutional Networks
por: Yo-Han Park, et al.
Publicado: (2021) -
Graph Embedding for Scholar Recommendation in Academic Social Networks
por: Chengzhe Yuan, et al.
Publicado: (2021) -
Spectral-Spatial Offset Graph Convolutional Networks for Hyperspectral Image Classification
por: Minghua Zhang, et al.
Publicado: (2021) -
Total graph of a commutative semiring with respect to singular ideal
por: Goswami,Nabanita, et al.
Publicado: (2020)