Nanomaterials design for super-degenerate electronic state beyond the limit of geometrical symmetry

No substances with greater degrees of degeneracy than spherical atoms are known, due to geometrical limitations. In this work the authors combine density functional theory and tight-binding models to predict metal clusters with higher-fold degeneracies than spherical atoms, which are ascribed to dyn...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Naoki Haruta, Takamasa Tsukamoto, Akiyoshi Kuzume, Tetsuya Kambe, Kimihisa Yamamoto
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/6950b721453741f78d018b0394d8e6db
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6950b721453741f78d018b0394d8e6db
record_format dspace
spelling oai:doaj.org-article:6950b721453741f78d018b0394d8e6db2021-12-02T14:38:49ZNanomaterials design for super-degenerate electronic state beyond the limit of geometrical symmetry10.1038/s41467-018-06244-82041-1723https://doaj.org/article/6950b721453741f78d018b0394d8e6db2018-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-06244-8https://doaj.org/toc/2041-1723No substances with greater degrees of degeneracy than spherical atoms are known, due to geometrical limitations. In this work the authors combine density functional theory and tight-binding models to predict metal clusters with higher-fold degeneracies than spherical atoms, which are ascribed to dynamical symmetry.Naoki HarutaTakamasa TsukamotoAkiyoshi KuzumeTetsuya KambeKimihisa YamamotoNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-6 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Naoki Haruta
Takamasa Tsukamoto
Akiyoshi Kuzume
Tetsuya Kambe
Kimihisa Yamamoto
Nanomaterials design for super-degenerate electronic state beyond the limit of geometrical symmetry
description No substances with greater degrees of degeneracy than spherical atoms are known, due to geometrical limitations. In this work the authors combine density functional theory and tight-binding models to predict metal clusters with higher-fold degeneracies than spherical atoms, which are ascribed to dynamical symmetry.
format article
author Naoki Haruta
Takamasa Tsukamoto
Akiyoshi Kuzume
Tetsuya Kambe
Kimihisa Yamamoto
author_facet Naoki Haruta
Takamasa Tsukamoto
Akiyoshi Kuzume
Tetsuya Kambe
Kimihisa Yamamoto
author_sort Naoki Haruta
title Nanomaterials design for super-degenerate electronic state beyond the limit of geometrical symmetry
title_short Nanomaterials design for super-degenerate electronic state beyond the limit of geometrical symmetry
title_full Nanomaterials design for super-degenerate electronic state beyond the limit of geometrical symmetry
title_fullStr Nanomaterials design for super-degenerate electronic state beyond the limit of geometrical symmetry
title_full_unstemmed Nanomaterials design for super-degenerate electronic state beyond the limit of geometrical symmetry
title_sort nanomaterials design for super-degenerate electronic state beyond the limit of geometrical symmetry
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/6950b721453741f78d018b0394d8e6db
work_keys_str_mv AT naokiharuta nanomaterialsdesignforsuperdegenerateelectronicstatebeyondthelimitofgeometricalsymmetry
AT takamasatsukamoto nanomaterialsdesignforsuperdegenerateelectronicstatebeyondthelimitofgeometricalsymmetry
AT akiyoshikuzume nanomaterialsdesignforsuperdegenerateelectronicstatebeyondthelimitofgeometricalsymmetry
AT tetsuyakambe nanomaterialsdesignforsuperdegenerateelectronicstatebeyondthelimitofgeometricalsymmetry
AT kimihisayamamoto nanomaterialsdesignforsuperdegenerateelectronicstatebeyondthelimitofgeometricalsymmetry
_version_ 1718390839166631936