Benenti Tensors: A useful tool in Projective Differential Geometry

Two metrics are said to be projectively equivalent if they share the same geodesics (viewed as unparametrized curves). The degree of mobility of a metric g is the dimension of the space of the metrics projectively equivalent to g. For any pair of metrics (g, ḡ) on the same manifold one can construct...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Manno Gianni, Vollmer Andreas
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2018
Materias:
Acceso en línea:https://doaj.org/article/69574509794c40c8b0828478926b1cc7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Two metrics are said to be projectively equivalent if they share the same geodesics (viewed as unparametrized curves). The degree of mobility of a metric g is the dimension of the space of the metrics projectively equivalent to g. For any pair of metrics (g, ḡ) on the same manifold one can construct a (1, 1)- tensor L(g, ḡ) called the Benenti tensor. In this paper we discuss some geometrical properties of Benenti tensors when (g, ḡ) are projectively equivalent, particularly in the case of degree of mobility equal to 2.