Benenti Tensors: A useful tool in Projective Differential Geometry

Two metrics are said to be projectively equivalent if they share the same geodesics (viewed as unparametrized curves). The degree of mobility of a metric g is the dimension of the space of the metrics projectively equivalent to g. For any pair of metrics (g, ḡ) on the same manifold one can construct...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Manno Gianni, Vollmer Andreas
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2018
Materias:
Acceso en línea:https://doaj.org/article/69574509794c40c8b0828478926b1cc7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:69574509794c40c8b0828478926b1cc7
record_format dspace
spelling oai:doaj.org-article:69574509794c40c8b0828478926b1cc72021-12-02T19:07:54ZBenenti Tensors: A useful tool in Projective Differential Geometry2300-744310.1515/coma-2018-0006https://doaj.org/article/69574509794c40c8b0828478926b1cc72018-05-01T00:00:00Zhttps://doi.org/10.1515/coma-2018-0006https://doaj.org/toc/2300-7443Two metrics are said to be projectively equivalent if they share the same geodesics (viewed as unparametrized curves). The degree of mobility of a metric g is the dimension of the space of the metrics projectively equivalent to g. For any pair of metrics (g, ḡ) on the same manifold one can construct a (1, 1)- tensor L(g, ḡ) called the Benenti tensor. In this paper we discuss some geometrical properties of Benenti tensors when (g, ḡ) are projectively equivalent, particularly in the case of degree of mobility equal to 2.Manno GianniVollmer AndreasDe Gruyterarticleprojective connectionsbenenti tensorsprojectively equivalent metricslevi-civita metrics53a2053b10MathematicsQA1-939ENComplex Manifolds, Vol 5, Iss 1, Pp 111-121 (2018)
institution DOAJ
collection DOAJ
language EN
topic projective connections
benenti tensors
projectively equivalent metrics
levi-civita metrics
53a20
53b10
Mathematics
QA1-939
spellingShingle projective connections
benenti tensors
projectively equivalent metrics
levi-civita metrics
53a20
53b10
Mathematics
QA1-939
Manno Gianni
Vollmer Andreas
Benenti Tensors: A useful tool in Projective Differential Geometry
description Two metrics are said to be projectively equivalent if they share the same geodesics (viewed as unparametrized curves). The degree of mobility of a metric g is the dimension of the space of the metrics projectively equivalent to g. For any pair of metrics (g, ḡ) on the same manifold one can construct a (1, 1)- tensor L(g, ḡ) called the Benenti tensor. In this paper we discuss some geometrical properties of Benenti tensors when (g, ḡ) are projectively equivalent, particularly in the case of degree of mobility equal to 2.
format article
author Manno Gianni
Vollmer Andreas
author_facet Manno Gianni
Vollmer Andreas
author_sort Manno Gianni
title Benenti Tensors: A useful tool in Projective Differential Geometry
title_short Benenti Tensors: A useful tool in Projective Differential Geometry
title_full Benenti Tensors: A useful tool in Projective Differential Geometry
title_fullStr Benenti Tensors: A useful tool in Projective Differential Geometry
title_full_unstemmed Benenti Tensors: A useful tool in Projective Differential Geometry
title_sort benenti tensors: a useful tool in projective differential geometry
publisher De Gruyter
publishDate 2018
url https://doaj.org/article/69574509794c40c8b0828478926b1cc7
work_keys_str_mv AT mannogianni benentitensorsausefultoolinprojectivedifferentialgeometry
AT vollmerandreas benentitensorsausefultoolinprojectivedifferentialgeometry
_version_ 1718377154257879040