Benenti Tensors: A useful tool in Projective Differential Geometry
Two metrics are said to be projectively equivalent if they share the same geodesics (viewed as unparametrized curves). The degree of mobility of a metric g is the dimension of the space of the metrics projectively equivalent to g. For any pair of metrics (g, ḡ) on the same manifold one can construct...
Guardado en:
Autores principales: | Manno Gianni, Vollmer Andreas |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/69574509794c40c8b0828478926b1cc7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Kähler metrics via Lorentzian Geometry in dimension four
por: Aazami Amir Babak, et al.
Publicado: (2019) -
On Kähler-like and G-Kähler-like almost Hermitian manifolds
por: Kawamura Masaya
Publicado: (2020) -
G2-metrics arising from non-integrable special Lagrangian fibrations
por: Chihara Ryohei
Publicado: (2019) -
Estimates for a function on almost Hermitian manifolds
por: Kawamura Masaya
Publicado: (2021) -
Deformations of Strong Kähler with torsion metrics
por: Piovani Riccardo, et al.
Publicado: (2021)