Untangling the influence of biotic and abiotic factors on habitat selection by a tropical rodent

Abstract Understanding how animal populations respond to environmental factors is critical because large-scale environmental processes (e.g., habitat fragmentation, climate change) are impacting ecosystems at unprecedented rates. On an overgrazed floodplain in north-western Australia, a native roden...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Georgia Ward-Fear, Gregory P. Brown, David Pearson, Richard Shine
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/696010b783c24777b7907b407c83122a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Understanding how animal populations respond to environmental factors is critical because large-scale environmental processes (e.g., habitat fragmentation, climate change) are impacting ecosystems at unprecedented rates. On an overgrazed floodplain in north-western Australia, a native rodent (Pale Field Rat, Rattus tunneyi) constructs its burrows primarily beneath an invasive tree (Chinee Apple, Ziziphus mauritiana) rather than native trees. The dense thorny foliage of the Chinee Apple may allow high rat densities either because of abiotic effects (shade, in a very hot environment) or biotic processes (protection from trampling and soil compaction by feral horses, and/or predation). To distinguish between these hypotheses, we manipulated Chinee Apple foliage to modify biotic factors (access to horses and predators) but not shade levels. We surveyed the rat population with Elliott traps under treatment and control trees and in the open woodland, in two seasons (the breeding season—January, and the nesting season—May). In the breeding season, we ran giving-up density experiments (GUD) with food trays, to assess the perceived risk of predation by rats across our three treatments. Selective trimming of foliage did not affect thermal regimes underneath the trees but did allow ingress of horses and we observed two collapsed burrows as a consequence (although long term impacts of horses were not measured). The perceived predation risk also increased (GUD values at food trays increased) and was highest in the open woodland. Our manipulation resulted in a shift in rat sex ratios (indicating female preference for breeding under control but not foliage-trimmed trees) and influenced rat behaviour (giving-up densities increased; large dominant males inhabited the control but not treatment trees). Our data suggest that the primary benefit of the Chinee Apple tree to native rodents lies in physical protection from predators and (potentially) feral horses, rather than in providing cooler microhabitat.