Dynamical sensitivity control of a single-spin quantum sensor

Abstract The Nitrogen-Vacancy (NV) defect in diamond is a unique quantum system that offers precision sensing of nanoscale physical quantities at room temperature beyond the current state-of-the-art. The benchmark parameters for nanoscale magnetometry applications are sensitivity, spectral resolutio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Andrii Lazariev, Silvia Arroyo-Camejo, Ganesh Rahane, Vinaya Kumar Kavatamane, Gopalakrishnan Balasubramanian
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/699e6d3714044c008042924af092c8dc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:699e6d3714044c008042924af092c8dc
record_format dspace
spelling oai:doaj.org-article:699e6d3714044c008042924af092c8dc2021-12-02T16:08:00ZDynamical sensitivity control of a single-spin quantum sensor10.1038/s41598-017-05387-w2045-2322https://doaj.org/article/699e6d3714044c008042924af092c8dc2017-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-05387-whttps://doaj.org/toc/2045-2322Abstract The Nitrogen-Vacancy (NV) defect in diamond is a unique quantum system that offers precision sensing of nanoscale physical quantities at room temperature beyond the current state-of-the-art. The benchmark parameters for nanoscale magnetometry applications are sensitivity, spectral resolution, and dynamic range. Under realistic conditions the NV sensors controlled by conventional sensing schemes suffer from limitations of these parameters. Here we experimentally show a new method called dynamical sensitivity control (DYSCO) that boost the benchmark parameters and thus extends the practical applicability of the NV spin for nanoscale sensing. In contrast to conventional dynamical decoupling schemes, where π pulse trains toggle the spin precession abruptly, the DYSCO method allows for a smooth, analog modulation of the quantum probe’s sensitivity. Our method decouples frequency selectivity and spectral resolution unconstrained over the bandwidth (1.85 MHz–392 Hz in our experiments). Using DYSCO we demonstrate high-accuracy NV magnetometry without |2π| ambiguities, an enhancement of the dynamic range by a factor of 4 · 103, and interrogation times exceeding 2 ms in off-the-shelf diamond. In a broader perspective the DYSCO method provides a handle on the inherent dynamics of quantum systems offering decisive advantages for NV centre based applications notably in quantum information and single molecule NMR/MRI.Andrii LazarievSilvia Arroyo-CamejoGanesh RahaneVinaya Kumar KavatamaneGopalakrishnan BalasubramanianNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-11 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Andrii Lazariev
Silvia Arroyo-Camejo
Ganesh Rahane
Vinaya Kumar Kavatamane
Gopalakrishnan Balasubramanian
Dynamical sensitivity control of a single-spin quantum sensor
description Abstract The Nitrogen-Vacancy (NV) defect in diamond is a unique quantum system that offers precision sensing of nanoscale physical quantities at room temperature beyond the current state-of-the-art. The benchmark parameters for nanoscale magnetometry applications are sensitivity, spectral resolution, and dynamic range. Under realistic conditions the NV sensors controlled by conventional sensing schemes suffer from limitations of these parameters. Here we experimentally show a new method called dynamical sensitivity control (DYSCO) that boost the benchmark parameters and thus extends the practical applicability of the NV spin for nanoscale sensing. In contrast to conventional dynamical decoupling schemes, where π pulse trains toggle the spin precession abruptly, the DYSCO method allows for a smooth, analog modulation of the quantum probe’s sensitivity. Our method decouples frequency selectivity and spectral resolution unconstrained over the bandwidth (1.85 MHz–392 Hz in our experiments). Using DYSCO we demonstrate high-accuracy NV magnetometry without |2π| ambiguities, an enhancement of the dynamic range by a factor of 4 · 103, and interrogation times exceeding 2 ms in off-the-shelf diamond. In a broader perspective the DYSCO method provides a handle on the inherent dynamics of quantum systems offering decisive advantages for NV centre based applications notably in quantum information and single molecule NMR/MRI.
format article
author Andrii Lazariev
Silvia Arroyo-Camejo
Ganesh Rahane
Vinaya Kumar Kavatamane
Gopalakrishnan Balasubramanian
author_facet Andrii Lazariev
Silvia Arroyo-Camejo
Ganesh Rahane
Vinaya Kumar Kavatamane
Gopalakrishnan Balasubramanian
author_sort Andrii Lazariev
title Dynamical sensitivity control of a single-spin quantum sensor
title_short Dynamical sensitivity control of a single-spin quantum sensor
title_full Dynamical sensitivity control of a single-spin quantum sensor
title_fullStr Dynamical sensitivity control of a single-spin quantum sensor
title_full_unstemmed Dynamical sensitivity control of a single-spin quantum sensor
title_sort dynamical sensitivity control of a single-spin quantum sensor
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/699e6d3714044c008042924af092c8dc
work_keys_str_mv AT andriilazariev dynamicalsensitivitycontrolofasinglespinquantumsensor
AT silviaarroyocamejo dynamicalsensitivitycontrolofasinglespinquantumsensor
AT ganeshrahane dynamicalsensitivitycontrolofasinglespinquantumsensor
AT vinayakumarkavatamane dynamicalsensitivitycontrolofasinglespinquantumsensor
AT gopalakrishnanbalasubramanian dynamicalsensitivitycontrolofasinglespinquantumsensor
_version_ 1718384661050163200