A clinical diagnostic model for predicting influenza among young adult military personnel with febrile respiratory illness in Singapore.
<h4>Introduction</h4>Influenza infections present with wide-ranging clinical features. We aim to compare the differences in presentation between influenza and non-influenza cases among those with febrile respiratory illness (FRI) to determine predictors of influenza infection.<h4>M...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2011
|
Materias: | |
Acceso en línea: | https://doaj.org/article/69b1b9eecfc340ac90f574fec7378d53 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:69b1b9eecfc340ac90f574fec7378d53 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:69b1b9eecfc340ac90f574fec7378d532021-11-18T06:57:54ZA clinical diagnostic model for predicting influenza among young adult military personnel with febrile respiratory illness in Singapore.1932-620310.1371/journal.pone.0017468https://doaj.org/article/69b1b9eecfc340ac90f574fec7378d532011-03-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/21399686/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203<h4>Introduction</h4>Influenza infections present with wide-ranging clinical features. We aim to compare the differences in presentation between influenza and non-influenza cases among those with febrile respiratory illness (FRI) to determine predictors of influenza infection.<h4>Methods</h4>Personnel with FRI (defined as fever ≥ 37.5 °C, with cough or sore throat) were recruited from the sentinel surveillance system in the Singapore military. Nasal washes were collected, and tested using the Resplex II and additional PCR assays for etiological determination. Interviewer-administered questionnaires collected information on patient demographics and clinical features. Univariate comparison of the various parameters was conducted, with statistically significant parameters entered into a multivariate logistic regression model. The final multivariate model for influenza versus non-influenza cases was used to build a predictive probability clinical diagnostic model.<h4>Results</h4>821 out of 2858 subjects recruited from 11 May 2009 to 25 Jun 2010 had influenza, of which 434 (52.9%) had 2009 influenza A (H1N1), 58 (7.1%) seasonal influenza A (H3N2) and 269 (32.8%) influenza B. Influenza-positive cases were significantly more likely to present with running nose, chills and rigors, ocular symptoms and higher temperature, and less likely with sore throat, photophobia, injected pharynx, and nausea/vomiting. Our clinical diagnostic model had a sensitivity of 65% (95% CI: 58%, 72%), specificity of 69% (95% CI: 62%, 75%), and overall accuracy of 68% (95% CI: 64%, 71%), performing significantly better than conventional influenza-like illness (ILI) criteria.<h4>Conclusions</h4>Use of a clinical diagnostic model may help predict influenza better than the conventional ILI definition among young adults with FRI.Vernon J LeeJonathan YapAlex R CookChi Hsien TanJin-Phang LohWee-Hong KohElizabeth A S LimJasper C W LiawJanet S W ChewIqbal HossainKa Wei ChanPei-Jun TingSock-Hoon NgQiuhan GaoPaul M KellyMark I ChenPaul A TambyahBoon Huan TanPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 6, Iss 3, p e17468 (2011) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Vernon J Lee Jonathan Yap Alex R Cook Chi Hsien Tan Jin-Phang Loh Wee-Hong Koh Elizabeth A S Lim Jasper C W Liaw Janet S W Chew Iqbal Hossain Ka Wei Chan Pei-Jun Ting Sock-Hoon Ng Qiuhan Gao Paul M Kelly Mark I Chen Paul A Tambyah Boon Huan Tan A clinical diagnostic model for predicting influenza among young adult military personnel with febrile respiratory illness in Singapore. |
description |
<h4>Introduction</h4>Influenza infections present with wide-ranging clinical features. We aim to compare the differences in presentation between influenza and non-influenza cases among those with febrile respiratory illness (FRI) to determine predictors of influenza infection.<h4>Methods</h4>Personnel with FRI (defined as fever ≥ 37.5 °C, with cough or sore throat) were recruited from the sentinel surveillance system in the Singapore military. Nasal washes were collected, and tested using the Resplex II and additional PCR assays for etiological determination. Interviewer-administered questionnaires collected information on patient demographics and clinical features. Univariate comparison of the various parameters was conducted, with statistically significant parameters entered into a multivariate logistic regression model. The final multivariate model for influenza versus non-influenza cases was used to build a predictive probability clinical diagnostic model.<h4>Results</h4>821 out of 2858 subjects recruited from 11 May 2009 to 25 Jun 2010 had influenza, of which 434 (52.9%) had 2009 influenza A (H1N1), 58 (7.1%) seasonal influenza A (H3N2) and 269 (32.8%) influenza B. Influenza-positive cases were significantly more likely to present with running nose, chills and rigors, ocular symptoms and higher temperature, and less likely with sore throat, photophobia, injected pharynx, and nausea/vomiting. Our clinical diagnostic model had a sensitivity of 65% (95% CI: 58%, 72%), specificity of 69% (95% CI: 62%, 75%), and overall accuracy of 68% (95% CI: 64%, 71%), performing significantly better than conventional influenza-like illness (ILI) criteria.<h4>Conclusions</h4>Use of a clinical diagnostic model may help predict influenza better than the conventional ILI definition among young adults with FRI. |
format |
article |
author |
Vernon J Lee Jonathan Yap Alex R Cook Chi Hsien Tan Jin-Phang Loh Wee-Hong Koh Elizabeth A S Lim Jasper C W Liaw Janet S W Chew Iqbal Hossain Ka Wei Chan Pei-Jun Ting Sock-Hoon Ng Qiuhan Gao Paul M Kelly Mark I Chen Paul A Tambyah Boon Huan Tan |
author_facet |
Vernon J Lee Jonathan Yap Alex R Cook Chi Hsien Tan Jin-Phang Loh Wee-Hong Koh Elizabeth A S Lim Jasper C W Liaw Janet S W Chew Iqbal Hossain Ka Wei Chan Pei-Jun Ting Sock-Hoon Ng Qiuhan Gao Paul M Kelly Mark I Chen Paul A Tambyah Boon Huan Tan |
author_sort |
Vernon J Lee |
title |
A clinical diagnostic model for predicting influenza among young adult military personnel with febrile respiratory illness in Singapore. |
title_short |
A clinical diagnostic model for predicting influenza among young adult military personnel with febrile respiratory illness in Singapore. |
title_full |
A clinical diagnostic model for predicting influenza among young adult military personnel with febrile respiratory illness in Singapore. |
title_fullStr |
A clinical diagnostic model for predicting influenza among young adult military personnel with febrile respiratory illness in Singapore. |
title_full_unstemmed |
A clinical diagnostic model for predicting influenza among young adult military personnel with febrile respiratory illness in Singapore. |
title_sort |
clinical diagnostic model for predicting influenza among young adult military personnel with febrile respiratory illness in singapore. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2011 |
url |
https://doaj.org/article/69b1b9eecfc340ac90f574fec7378d53 |
work_keys_str_mv |
AT vernonjlee aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT jonathanyap aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT alexrcook aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT chihsientan aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT jinphangloh aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT weehongkoh aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT elizabethaslim aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT jaspercwliaw aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT janetswchew aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT iqbalhossain aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT kaweichan aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT peijunting aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT sockhoonng aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT qiuhangao aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT paulmkelly aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT markichen aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT paulatambyah aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT boonhuantan aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT vernonjlee clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT jonathanyap clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT alexrcook clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT chihsientan clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT jinphangloh clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT weehongkoh clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT elizabethaslim clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT jaspercwliaw clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT janetswchew clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT iqbalhossain clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT kaweichan clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT peijunting clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT sockhoonng clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT qiuhangao clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT paulmkelly clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT markichen clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT paulatambyah clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore AT boonhuantan clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore |
_version_ |
1718424107356258304 |