A clinical diagnostic model for predicting influenza among young adult military personnel with febrile respiratory illness in Singapore.

<h4>Introduction</h4>Influenza infections present with wide-ranging clinical features. We aim to compare the differences in presentation between influenza and non-influenza cases among those with febrile respiratory illness (FRI) to determine predictors of influenza infection.<h4>M...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Vernon J Lee, Jonathan Yap, Alex R Cook, Chi Hsien Tan, Jin-Phang Loh, Wee-Hong Koh, Elizabeth A S Lim, Jasper C W Liaw, Janet S W Chew, Iqbal Hossain, Ka Wei Chan, Pei-Jun Ting, Sock-Hoon Ng, Qiuhan Gao, Paul M Kelly, Mark I Chen, Paul A Tambyah, Boon Huan Tan
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2011
Materias:
R
Q
Acceso en línea:https://doaj.org/article/69b1b9eecfc340ac90f574fec7378d53
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:69b1b9eecfc340ac90f574fec7378d53
record_format dspace
spelling oai:doaj.org-article:69b1b9eecfc340ac90f574fec7378d532021-11-18T06:57:54ZA clinical diagnostic model for predicting influenza among young adult military personnel with febrile respiratory illness in Singapore.1932-620310.1371/journal.pone.0017468https://doaj.org/article/69b1b9eecfc340ac90f574fec7378d532011-03-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/21399686/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203<h4>Introduction</h4>Influenza infections present with wide-ranging clinical features. We aim to compare the differences in presentation between influenza and non-influenza cases among those with febrile respiratory illness (FRI) to determine predictors of influenza infection.<h4>Methods</h4>Personnel with FRI (defined as fever ≥ 37.5 °C, with cough or sore throat) were recruited from the sentinel surveillance system in the Singapore military. Nasal washes were collected, and tested using the Resplex II and additional PCR assays for etiological determination. Interviewer-administered questionnaires collected information on patient demographics and clinical features. Univariate comparison of the various parameters was conducted, with statistically significant parameters entered into a multivariate logistic regression model. The final multivariate model for influenza versus non-influenza cases was used to build a predictive probability clinical diagnostic model.<h4>Results</h4>821 out of 2858 subjects recruited from 11 May 2009 to 25 Jun 2010 had influenza, of which 434 (52.9%) had 2009 influenza A (H1N1), 58 (7.1%) seasonal influenza A (H3N2) and 269 (32.8%) influenza B. Influenza-positive cases were significantly more likely to present with running nose, chills and rigors, ocular symptoms and higher temperature, and less likely with sore throat, photophobia, injected pharynx, and nausea/vomiting. Our clinical diagnostic model had a sensitivity of 65% (95% CI: 58%, 72%), specificity of 69% (95% CI: 62%, 75%), and overall accuracy of 68% (95% CI: 64%, 71%), performing significantly better than conventional influenza-like illness (ILI) criteria.<h4>Conclusions</h4>Use of a clinical diagnostic model may help predict influenza better than the conventional ILI definition among young adults with FRI.Vernon J LeeJonathan YapAlex R CookChi Hsien TanJin-Phang LohWee-Hong KohElizabeth A S LimJasper C W LiawJanet S W ChewIqbal HossainKa Wei ChanPei-Jun TingSock-Hoon NgQiuhan GaoPaul M KellyMark I ChenPaul A TambyahBoon Huan TanPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 6, Iss 3, p e17468 (2011)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Vernon J Lee
Jonathan Yap
Alex R Cook
Chi Hsien Tan
Jin-Phang Loh
Wee-Hong Koh
Elizabeth A S Lim
Jasper C W Liaw
Janet S W Chew
Iqbal Hossain
Ka Wei Chan
Pei-Jun Ting
Sock-Hoon Ng
Qiuhan Gao
Paul M Kelly
Mark I Chen
Paul A Tambyah
Boon Huan Tan
A clinical diagnostic model for predicting influenza among young adult military personnel with febrile respiratory illness in Singapore.
description <h4>Introduction</h4>Influenza infections present with wide-ranging clinical features. We aim to compare the differences in presentation between influenza and non-influenza cases among those with febrile respiratory illness (FRI) to determine predictors of influenza infection.<h4>Methods</h4>Personnel with FRI (defined as fever ≥ 37.5 °C, with cough or sore throat) were recruited from the sentinel surveillance system in the Singapore military. Nasal washes were collected, and tested using the Resplex II and additional PCR assays for etiological determination. Interviewer-administered questionnaires collected information on patient demographics and clinical features. Univariate comparison of the various parameters was conducted, with statistically significant parameters entered into a multivariate logistic regression model. The final multivariate model for influenza versus non-influenza cases was used to build a predictive probability clinical diagnostic model.<h4>Results</h4>821 out of 2858 subjects recruited from 11 May 2009 to 25 Jun 2010 had influenza, of which 434 (52.9%) had 2009 influenza A (H1N1), 58 (7.1%) seasonal influenza A (H3N2) and 269 (32.8%) influenza B. Influenza-positive cases were significantly more likely to present with running nose, chills and rigors, ocular symptoms and higher temperature, and less likely with sore throat, photophobia, injected pharynx, and nausea/vomiting. Our clinical diagnostic model had a sensitivity of 65% (95% CI: 58%, 72%), specificity of 69% (95% CI: 62%, 75%), and overall accuracy of 68% (95% CI: 64%, 71%), performing significantly better than conventional influenza-like illness (ILI) criteria.<h4>Conclusions</h4>Use of a clinical diagnostic model may help predict influenza better than the conventional ILI definition among young adults with FRI.
format article
author Vernon J Lee
Jonathan Yap
Alex R Cook
Chi Hsien Tan
Jin-Phang Loh
Wee-Hong Koh
Elizabeth A S Lim
Jasper C W Liaw
Janet S W Chew
Iqbal Hossain
Ka Wei Chan
Pei-Jun Ting
Sock-Hoon Ng
Qiuhan Gao
Paul M Kelly
Mark I Chen
Paul A Tambyah
Boon Huan Tan
author_facet Vernon J Lee
Jonathan Yap
Alex R Cook
Chi Hsien Tan
Jin-Phang Loh
Wee-Hong Koh
Elizabeth A S Lim
Jasper C W Liaw
Janet S W Chew
Iqbal Hossain
Ka Wei Chan
Pei-Jun Ting
Sock-Hoon Ng
Qiuhan Gao
Paul M Kelly
Mark I Chen
Paul A Tambyah
Boon Huan Tan
author_sort Vernon J Lee
title A clinical diagnostic model for predicting influenza among young adult military personnel with febrile respiratory illness in Singapore.
title_short A clinical diagnostic model for predicting influenza among young adult military personnel with febrile respiratory illness in Singapore.
title_full A clinical diagnostic model for predicting influenza among young adult military personnel with febrile respiratory illness in Singapore.
title_fullStr A clinical diagnostic model for predicting influenza among young adult military personnel with febrile respiratory illness in Singapore.
title_full_unstemmed A clinical diagnostic model for predicting influenza among young adult military personnel with febrile respiratory illness in Singapore.
title_sort clinical diagnostic model for predicting influenza among young adult military personnel with febrile respiratory illness in singapore.
publisher Public Library of Science (PLoS)
publishDate 2011
url https://doaj.org/article/69b1b9eecfc340ac90f574fec7378d53
work_keys_str_mv AT vernonjlee aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT jonathanyap aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT alexrcook aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT chihsientan aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT jinphangloh aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT weehongkoh aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT elizabethaslim aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT jaspercwliaw aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT janetswchew aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT iqbalhossain aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT kaweichan aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT peijunting aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT sockhoonng aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT qiuhangao aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT paulmkelly aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT markichen aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT paulatambyah aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT boonhuantan aclinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT vernonjlee clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT jonathanyap clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT alexrcook clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT chihsientan clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT jinphangloh clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT weehongkoh clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT elizabethaslim clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT jaspercwliaw clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT janetswchew clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT iqbalhossain clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT kaweichan clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT peijunting clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT sockhoonng clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT qiuhangao clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT paulmkelly clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT markichen clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT paulatambyah clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
AT boonhuantan clinicaldiagnosticmodelforpredictinginfluenzaamongyoungadultmilitarypersonnelwithfebrilerespiratoryillnessinsingapore
_version_ 1718424107356258304