Robust circadian clock oscillation and osmotic rhythms in inner medulla reflecting cortico-medullary osmotic gradient rhythm in rodent kidney

Abstract Circadian clocks in mammals function in most organs and tissues throughout the body. Various renal functions such as the glomerular filtration and excretion of electrolytes exhibit circadian rhythms. Although it has been reported that the expression of the clock genes composing molecular os...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Masayuki Hara, Yoichi Minami, Munehiro Ohashi, Yoshiki Tsuchiya, Tetsuro Kusaba, Keiichi Tamagaki, Nobuya Koike, Yasuhiro Umemura, Hitoshi Inokawa, Kazuhiro Yagita
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/69b90a5eabb74e1db275fed1e4d32f50
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:69b90a5eabb74e1db275fed1e4d32f50
record_format dspace
spelling oai:doaj.org-article:69b90a5eabb74e1db275fed1e4d32f502021-12-02T16:06:00ZRobust circadian clock oscillation and osmotic rhythms in inner medulla reflecting cortico-medullary osmotic gradient rhythm in rodent kidney10.1038/s41598-017-07767-82045-2322https://doaj.org/article/69b90a5eabb74e1db275fed1e4d32f502017-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-07767-8https://doaj.org/toc/2045-2322Abstract Circadian clocks in mammals function in most organs and tissues throughout the body. Various renal functions such as the glomerular filtration and excretion of electrolytes exhibit circadian rhythms. Although it has been reported that the expression of the clock genes composing molecular oscillators show apparent daily rhythms in rodent kidneys, functional variations of regional clocks are not yet fully understood. In this study, using macroscopic bioluminescence imaging method of the PER2::Luciferase knock-in mouse kidney, we reveal that strong and robust circadian clock oscillation is observed in the medulla. In addition, the osmotic pressure in the inner medulla shows apparent daily fluctuation, but not in the cortex. Quantitative-PCR analysis of the genes contributing to the generation of high osmotic pressure or the water re-absorption in the inner medulla, such as vasopressin receptors (V1aR, V2R), urea transporter (UT-A2) and water channel (Aqp2) show diurnal variations as well as clock genes. Deficiency of an essential clock gene Bmal1 impairs day-night variations of osmotic pressure gradient in the inner medulla, suggesting that circadian clocks in the medulla part of the kidney may regulate the circadian rhythm of cortico-medullary osmotic pressure gradient, and may contribute physiological day-night rhythm of urination.Masayuki HaraYoichi MinamiMunehiro OhashiYoshiki TsuchiyaTetsuro KusabaKeiichi TamagakiNobuya KoikeYasuhiro UmemuraHitoshi InokawaKazuhiro YagitaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-9 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Masayuki Hara
Yoichi Minami
Munehiro Ohashi
Yoshiki Tsuchiya
Tetsuro Kusaba
Keiichi Tamagaki
Nobuya Koike
Yasuhiro Umemura
Hitoshi Inokawa
Kazuhiro Yagita
Robust circadian clock oscillation and osmotic rhythms in inner medulla reflecting cortico-medullary osmotic gradient rhythm in rodent kidney
description Abstract Circadian clocks in mammals function in most organs and tissues throughout the body. Various renal functions such as the glomerular filtration and excretion of electrolytes exhibit circadian rhythms. Although it has been reported that the expression of the clock genes composing molecular oscillators show apparent daily rhythms in rodent kidneys, functional variations of regional clocks are not yet fully understood. In this study, using macroscopic bioluminescence imaging method of the PER2::Luciferase knock-in mouse kidney, we reveal that strong and robust circadian clock oscillation is observed in the medulla. In addition, the osmotic pressure in the inner medulla shows apparent daily fluctuation, but not in the cortex. Quantitative-PCR analysis of the genes contributing to the generation of high osmotic pressure or the water re-absorption in the inner medulla, such as vasopressin receptors (V1aR, V2R), urea transporter (UT-A2) and water channel (Aqp2) show diurnal variations as well as clock genes. Deficiency of an essential clock gene Bmal1 impairs day-night variations of osmotic pressure gradient in the inner medulla, suggesting that circadian clocks in the medulla part of the kidney may regulate the circadian rhythm of cortico-medullary osmotic pressure gradient, and may contribute physiological day-night rhythm of urination.
format article
author Masayuki Hara
Yoichi Minami
Munehiro Ohashi
Yoshiki Tsuchiya
Tetsuro Kusaba
Keiichi Tamagaki
Nobuya Koike
Yasuhiro Umemura
Hitoshi Inokawa
Kazuhiro Yagita
author_facet Masayuki Hara
Yoichi Minami
Munehiro Ohashi
Yoshiki Tsuchiya
Tetsuro Kusaba
Keiichi Tamagaki
Nobuya Koike
Yasuhiro Umemura
Hitoshi Inokawa
Kazuhiro Yagita
author_sort Masayuki Hara
title Robust circadian clock oscillation and osmotic rhythms in inner medulla reflecting cortico-medullary osmotic gradient rhythm in rodent kidney
title_short Robust circadian clock oscillation and osmotic rhythms in inner medulla reflecting cortico-medullary osmotic gradient rhythm in rodent kidney
title_full Robust circadian clock oscillation and osmotic rhythms in inner medulla reflecting cortico-medullary osmotic gradient rhythm in rodent kidney
title_fullStr Robust circadian clock oscillation and osmotic rhythms in inner medulla reflecting cortico-medullary osmotic gradient rhythm in rodent kidney
title_full_unstemmed Robust circadian clock oscillation and osmotic rhythms in inner medulla reflecting cortico-medullary osmotic gradient rhythm in rodent kidney
title_sort robust circadian clock oscillation and osmotic rhythms in inner medulla reflecting cortico-medullary osmotic gradient rhythm in rodent kidney
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/69b90a5eabb74e1db275fed1e4d32f50
work_keys_str_mv AT masayukihara robustcircadianclockoscillationandosmoticrhythmsininnermedullareflectingcorticomedullaryosmoticgradientrhythminrodentkidney
AT yoichiminami robustcircadianclockoscillationandosmoticrhythmsininnermedullareflectingcorticomedullaryosmoticgradientrhythminrodentkidney
AT munehiroohashi robustcircadianclockoscillationandosmoticrhythmsininnermedullareflectingcorticomedullaryosmoticgradientrhythminrodentkidney
AT yoshikitsuchiya robustcircadianclockoscillationandosmoticrhythmsininnermedullareflectingcorticomedullaryosmoticgradientrhythminrodentkidney
AT tetsurokusaba robustcircadianclockoscillationandosmoticrhythmsininnermedullareflectingcorticomedullaryosmoticgradientrhythminrodentkidney
AT keiichitamagaki robustcircadianclockoscillationandosmoticrhythmsininnermedullareflectingcorticomedullaryosmoticgradientrhythminrodentkidney
AT nobuyakoike robustcircadianclockoscillationandosmoticrhythmsininnermedullareflectingcorticomedullaryosmoticgradientrhythminrodentkidney
AT yasuhiroumemura robustcircadianclockoscillationandosmoticrhythmsininnermedullareflectingcorticomedullaryosmoticgradientrhythminrodentkidney
AT hitoshiinokawa robustcircadianclockoscillationandosmoticrhythmsininnermedullareflectingcorticomedullaryosmoticgradientrhythminrodentkidney
AT kazuhiroyagita robustcircadianclockoscillationandosmoticrhythmsininnermedullareflectingcorticomedullaryosmoticgradientrhythminrodentkidney
_version_ 1718385153963720704