Cytotoxicity and antibacterial activity of gold-supported cerium oxide nanoparticles

K Suresh Babu,1,† M Anandkumar,1,† TY Tsai,2 TH Kao,2 B Stephen Inbaraj,2 BH Chen2,31Centre for Nano Sciences and Technology, Madanjeet School of Green Energy Technologies, Pondicherry University, Kalapet, India; 2Department of Food Science, 3Graduate Institute of Medicine, Fu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Suresh Babu K, Anandkumar M, Tsai TY, Kao TH, Stephen Inbaraj B, Chen BH
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2014
Materias:
Acceso en línea:https://doaj.org/article/69bb7341201f47419bcd9d1175f84700
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:69bb7341201f47419bcd9d1175f84700
record_format dspace
spelling oai:doaj.org-article:69bb7341201f47419bcd9d1175f847002021-12-02T00:27:13ZCytotoxicity and antibacterial activity of gold-supported cerium oxide nanoparticles1178-2013https://doaj.org/article/69bb7341201f47419bcd9d1175f847002014-11-01T00:00:00Zhttp://www.dovepress.com/cytotoxicity-and-antibacterial-activity-of-gold-supported-cerium-oxide-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013 K Suresh Babu,1,† M Anandkumar,1,† TY Tsai,2 TH Kao,2 B Stephen Inbaraj,2 BH Chen2,31Centre for Nano Sciences and Technology, Madanjeet School of Green Energy Technologies, Pondicherry University, Kalapet, India; 2Department of Food Science, 3Graduate Institute of Medicine, Fu Jen University, Taipei, Taiwan†These authors contributed equally to this workBackground: Cerium oxide nanoparticles (CeO2) have been shown to be a novel therapeutic in many biomedical applications. Gold (Au) nanoparticles have also attracted widespread interest due to their chemical stability and unique optical properties. Thus, decorating Au on CeO2 nanoparticles would have potential for exploitation in the biomedical field. Methods: In the present work, CeO2 nanoparticles synthesized by a chemical combustion method were supported with 3.5% Au (Au/CeO2) by a deposition-precipitation method. The as-synthesized Au, CeO2, and Au/CeO2 nanoparticles were evaluated for antibacterial activity and cytotoxicity in RAW 264.7 normal cells and A549 lung cancer cells. Results: The as-synthesized nanoparticles were characterized by X-ray diffraction, scanning and transmission electron microscopy, and ultraviolet-visible measurements. The X-ray diffraction study confirmed the formation of cubic fluorite-structured CeO2 nanoparticles with a size of 10 nm. All synthesized nanoparticles were nontoxic towards RAW 264.7 cells at doses of 0–1,000 µM except for Au at >100 µM. For A549 cancer cells, Au/CeO2 had the highest inhibitory effect, followed by both Au and CeO2 which showed a similar effect at 500 and 1,000 µM. Initial binding of nanoparticles occurred through localized positively charged sites in A549 cells as shown by a shift in zeta potential from positive to negative after 24 hours of incubation. A dose-dependent elevation in reactive oxygen species indicated that the pro-oxidant activity of the nanoparticles was responsible for their cytotoxicity towards A549 cells. In addition, cellular uptake seen on transmission electron microscopic images indicated predominant localization of nanoparticles in the cytoplasmic matrix and mitochondrial damage due to oxidative stress. With regard to antibacterial activity, both types of nanoparticles had the strongest inhibitory effect on Bacillus subtilis in monoculture systems, followed by Salmonella enteritidis, Escherichia coli, and Staphylococcus aureus, while, in coculture tests with Lactobacillus plantarum, S. aureus was inhibited to a greater extent than the other bacteria. Conclusion: Gold-supported CeO2 nanoparticles may be a potential nanomaterial for in vivo application owing to their biocompatible and antibacterial properties.Keywords: cerium oxide nanoparticles, gold supported cerium oxide, cytotoxicity, antibacterial activity, cellular uptake, reactive oxygen speciesSuresh Babu KAnandkumar MTsai TYKao THStephen Inbaraj BChen BHDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2014, Iss Issue 1, Pp 5515-5531 (2014)
institution DOAJ
collection DOAJ
language EN
topic Medicine (General)
R5-920
spellingShingle Medicine (General)
R5-920
Suresh Babu K
Anandkumar M
Tsai TY
Kao TH
Stephen Inbaraj B
Chen BH
Cytotoxicity and antibacterial activity of gold-supported cerium oxide nanoparticles
description K Suresh Babu,1,† M Anandkumar,1,† TY Tsai,2 TH Kao,2 B Stephen Inbaraj,2 BH Chen2,31Centre for Nano Sciences and Technology, Madanjeet School of Green Energy Technologies, Pondicherry University, Kalapet, India; 2Department of Food Science, 3Graduate Institute of Medicine, Fu Jen University, Taipei, Taiwan†These authors contributed equally to this workBackground: Cerium oxide nanoparticles (CeO2) have been shown to be a novel therapeutic in many biomedical applications. Gold (Au) nanoparticles have also attracted widespread interest due to their chemical stability and unique optical properties. Thus, decorating Au on CeO2 nanoparticles would have potential for exploitation in the biomedical field. Methods: In the present work, CeO2 nanoparticles synthesized by a chemical combustion method were supported with 3.5% Au (Au/CeO2) by a deposition-precipitation method. The as-synthesized Au, CeO2, and Au/CeO2 nanoparticles were evaluated for antibacterial activity and cytotoxicity in RAW 264.7 normal cells and A549 lung cancer cells. Results: The as-synthesized nanoparticles were characterized by X-ray diffraction, scanning and transmission electron microscopy, and ultraviolet-visible measurements. The X-ray diffraction study confirmed the formation of cubic fluorite-structured CeO2 nanoparticles with a size of 10 nm. All synthesized nanoparticles were nontoxic towards RAW 264.7 cells at doses of 0–1,000 µM except for Au at >100 µM. For A549 cancer cells, Au/CeO2 had the highest inhibitory effect, followed by both Au and CeO2 which showed a similar effect at 500 and 1,000 µM. Initial binding of nanoparticles occurred through localized positively charged sites in A549 cells as shown by a shift in zeta potential from positive to negative after 24 hours of incubation. A dose-dependent elevation in reactive oxygen species indicated that the pro-oxidant activity of the nanoparticles was responsible for their cytotoxicity towards A549 cells. In addition, cellular uptake seen on transmission electron microscopic images indicated predominant localization of nanoparticles in the cytoplasmic matrix and mitochondrial damage due to oxidative stress. With regard to antibacterial activity, both types of nanoparticles had the strongest inhibitory effect on Bacillus subtilis in monoculture systems, followed by Salmonella enteritidis, Escherichia coli, and Staphylococcus aureus, while, in coculture tests with Lactobacillus plantarum, S. aureus was inhibited to a greater extent than the other bacteria. Conclusion: Gold-supported CeO2 nanoparticles may be a potential nanomaterial for in vivo application owing to their biocompatible and antibacterial properties.Keywords: cerium oxide nanoparticles, gold supported cerium oxide, cytotoxicity, antibacterial activity, cellular uptake, reactive oxygen species
format article
author Suresh Babu K
Anandkumar M
Tsai TY
Kao TH
Stephen Inbaraj B
Chen BH
author_facet Suresh Babu K
Anandkumar M
Tsai TY
Kao TH
Stephen Inbaraj B
Chen BH
author_sort Suresh Babu K
title Cytotoxicity and antibacterial activity of gold-supported cerium oxide nanoparticles
title_short Cytotoxicity and antibacterial activity of gold-supported cerium oxide nanoparticles
title_full Cytotoxicity and antibacterial activity of gold-supported cerium oxide nanoparticles
title_fullStr Cytotoxicity and antibacterial activity of gold-supported cerium oxide nanoparticles
title_full_unstemmed Cytotoxicity and antibacterial activity of gold-supported cerium oxide nanoparticles
title_sort cytotoxicity and antibacterial activity of gold-supported cerium oxide nanoparticles
publisher Dove Medical Press
publishDate 2014
url https://doaj.org/article/69bb7341201f47419bcd9d1175f84700
work_keys_str_mv AT sureshbabuk cytotoxicityandantibacterialactivityofgoldsupportedceriumoxidenanoparticles
AT anandkumarm cytotoxicityandantibacterialactivityofgoldsupportedceriumoxidenanoparticles
AT tsaity cytotoxicityandantibacterialactivityofgoldsupportedceriumoxidenanoparticles
AT kaoth cytotoxicityandantibacterialactivityofgoldsupportedceriumoxidenanoparticles
AT stepheninbarajb cytotoxicityandantibacterialactivityofgoldsupportedceriumoxidenanoparticles
AT chenbh cytotoxicityandantibacterialactivityofgoldsupportedceriumoxidenanoparticles
_version_ 1718403742126047232