Accurate and scalable graph neural network force field and molecular dynamics with direct force architecture

Abstract Recently, machine learning (ML) has been used to address the computational cost that has been limiting ab initio molecular dynamics (AIMD). Here, we present GNNFF, a graph neural network framework to directly predict atomic forces from automatically extracted features of the local atomic en...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cheol Woo Park, Mordechai Kornbluth, Jonathan Vandermause, Chris Wolverton, Boris Kozinsky, Jonathan P. Mailoa
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/69d11dd21aef4871997919972e929e7b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares