Accurate and scalable graph neural network force field and molecular dynamics with direct force architecture
Abstract Recently, machine learning (ML) has been used to address the computational cost that has been limiting ab initio molecular dynamics (AIMD). Here, we present GNNFF, a graph neural network framework to directly predict atomic forces from automatically extracted features of the local atomic en...
Guardado en:
Autores principales: | Cheol Woo Park, Mordechai Kornbluth, Jonathan Vandermause, Chris Wolverton, Boris Kozinsky, Jonathan P. Mailoa |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/69d11dd21aef4871997919972e929e7b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Bayesian force fields from active learning for simulation of inter-dimensional transformation of stanene
por: Yu Xie, et al.
Publicado: (2021) -
Graph neural networks for an accurate and interpretable prediction of the properties of polycrystalline materials
por: Minyi Dai, et al.
Publicado: (2021) -
Exploiting the quantum mechanically derived force field for functional materials simulations
por: Alexey Odinokov, et al.
Publicado: (2021) -
Neural network reactive force field for C, H, N, and O systems
por: Pilsun Yoo, et al.
Publicado: (2021) -
Data-driven magneto-elastic predictions with scalable classical spin-lattice dynamics
por: Svetoslav Nikolov, et al.
Publicado: (2021)