Machine learning prediction models for prognosis of critically ill patients after open-heart surgery
Abstract We aimed to build up multiple machine learning models to predict 30-days mortality, and 3 complications including septic shock, thrombocytopenia, and liver dysfunction after open-heart surgery. Patients who underwent coronary artery bypass surgery, aortic valve replacement, or other heart-r...
Guardado en:
Autores principales: | Zhihua Zhong, Xin Yuan, Shizhen Liu, Yuer Yang, Fanna Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/69eb579772ef469d946cc6b2735f8712 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Explainable machine-learning predictions for complications after pediatric congenital heart surgery
por: Xian Zeng, et al.
Publicado: (2021) -
Impact of peripheral muscle strength on prognosis after extubation and functional outcomes in critically ill patients: a feasibility study
por: Tsung-Hsien Wang, et al.
Publicado: (2021) -
Machine Learning Prediction of Death in Critically Ill Patients With Coronavirus Disease 2019
por: Matthew M. Churpek, MD, MPH, PhD, et al.
Publicado: (2021) -
Association between comorbid asthma and prognosis of critically ill patients with severe sepsis: a cohort study
por: Jinju Huang, et al.
Publicado: (2021) -
Risk prediction of clinical adverse outcomes with machine learning in a cohort of critically ill patients with atrial fibrillation
por: Lorenzo Falsetti, et al.
Publicado: (2021)