Three-dimensional LASIK flap thickness variability: topographic central, paracentral and peripheral assessment, in flaps created by a mechanical microkeratome (M2) and two different femtosecond lasers (FS60 and FS200)

A John Kanellopoulos,1,2 George Asimellis1 1Laservision.gr Institute, Athens, Greece; 2NYU Medical School, New York, USA Purpose: To evaluate programmed versus achieved laser-assisted in situ keratomileusis (LASIK) flap central thickness and investigate topographic flap thickness variability, as wel...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kanellopoulos AJ, Asimellis G
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2013
Materias:
Acceso en línea:https://doaj.org/article/69f7683351d545a5a11d911d1bea8405
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:69f7683351d545a5a11d911d1bea8405
record_format dspace
spelling oai:doaj.org-article:69f7683351d545a5a11d911d1bea84052021-12-02T00:21:09ZThree-dimensional LASIK flap thickness variability: topographic central, paracentral and peripheral assessment, in flaps created by a mechanical microkeratome (M2) and two different femtosecond lasers (FS60 and FS200)1177-54671177-5483https://doaj.org/article/69f7683351d545a5a11d911d1bea84052013-04-01T00:00:00Zhttp://www.dovepress.com/three-dimensional-lasik-flap-thickness-variability-topographic-central-a12653https://doaj.org/toc/1177-5467https://doaj.org/toc/1177-5483A John Kanellopoulos,1,2 George Asimellis1 1Laservision.gr Institute, Athens, Greece; 2NYU Medical School, New York, USA Purpose: To evaluate programmed versus achieved laser-assisted in situ keratomileusis (LASIK) flap central thickness and investigate topographic flap thickness variability, as well as the effect of potential epithelial remodeling interference on flap thickness variability. Patients and methods: Flap thickness was investigated in 110 eyes that had had bilateral myopic LASIK several years ago (average 4.5 ± 2.7 years; range 2–7 years). Three age-matched study groups were formed, based on the method of primary flap creation: Group A (flaps made by the Moria Surgical M2 microkeratome [Antony, France]), Group B (flaps made by the Abbott Medical Optics IntraLase™ FS60 femtosecond laser [Santa Ana, CA, USA]), and Group C (flaps made by the Alcon WaveLight® FS200 femtosecond laser [Fort Worth, TX, USA]). Whole-cornea topographic maps of flap and epithelial thickness were obtained by scanning high-frequency ultrasound biomicroscopy. On each eye, topographic flap and epithelial thickness variability was computed by the standard deviation of thickness corresponding to 21 equally spaced points over the entire corneal area imaged. Results: The average central flap thickness for each group was 138.33 ± 12.38 µm (mean ± standard deviation) in Group A, 128.46 ± 5.72 µm in Group B, and 122.00 ± 5.64 µm in Group C. Topographic flap thickness variability was 9.73 ± 4.93 µm for Group A, 8.48 ± 4.23 µm for Group B, and 4.84 ± 1.88 µm for Group C. The smaller topographic flap thickness variability of Group C (FS200) was statistically significant compared with that of Group A (M2) (P = 0.004), indicating improved topographic flap thickness consistency – that is, improved precision – over the entire flap area affected. Conclusions: The two femtosecond lasers produced a smaller flap thickness and reduced variability than the mechanical microkeratome. In addition, our study suggests that there may be a significant difference in topographic flap thickness variability between the results achieved by the two femtosecond lasers examined. Keywords: Moria M2, IntraLase FS60, WaveLight® FS200, Allegretto Wave® Eye-Q, 400 Hz excimer, ultrasound biomicroscopyKanellopoulos AJAsimellis GDove Medical PressarticleOphthalmologyRE1-994ENClinical Ophthalmology, Vol 2013, Iss default, Pp 675-683 (2013)
institution DOAJ
collection DOAJ
language EN
topic Ophthalmology
RE1-994
spellingShingle Ophthalmology
RE1-994
Kanellopoulos AJ
Asimellis G
Three-dimensional LASIK flap thickness variability: topographic central, paracentral and peripheral assessment, in flaps created by a mechanical microkeratome (M2) and two different femtosecond lasers (FS60 and FS200)
description A John Kanellopoulos,1,2 George Asimellis1 1Laservision.gr Institute, Athens, Greece; 2NYU Medical School, New York, USA Purpose: To evaluate programmed versus achieved laser-assisted in situ keratomileusis (LASIK) flap central thickness and investigate topographic flap thickness variability, as well as the effect of potential epithelial remodeling interference on flap thickness variability. Patients and methods: Flap thickness was investigated in 110 eyes that had had bilateral myopic LASIK several years ago (average 4.5 ± 2.7 years; range 2–7 years). Three age-matched study groups were formed, based on the method of primary flap creation: Group A (flaps made by the Moria Surgical M2 microkeratome [Antony, France]), Group B (flaps made by the Abbott Medical Optics IntraLase™ FS60 femtosecond laser [Santa Ana, CA, USA]), and Group C (flaps made by the Alcon WaveLight® FS200 femtosecond laser [Fort Worth, TX, USA]). Whole-cornea topographic maps of flap and epithelial thickness were obtained by scanning high-frequency ultrasound biomicroscopy. On each eye, topographic flap and epithelial thickness variability was computed by the standard deviation of thickness corresponding to 21 equally spaced points over the entire corneal area imaged. Results: The average central flap thickness for each group was 138.33 ± 12.38 µm (mean ± standard deviation) in Group A, 128.46 ± 5.72 µm in Group B, and 122.00 ± 5.64 µm in Group C. Topographic flap thickness variability was 9.73 ± 4.93 µm for Group A, 8.48 ± 4.23 µm for Group B, and 4.84 ± 1.88 µm for Group C. The smaller topographic flap thickness variability of Group C (FS200) was statistically significant compared with that of Group A (M2) (P = 0.004), indicating improved topographic flap thickness consistency – that is, improved precision – over the entire flap area affected. Conclusions: The two femtosecond lasers produced a smaller flap thickness and reduced variability than the mechanical microkeratome. In addition, our study suggests that there may be a significant difference in topographic flap thickness variability between the results achieved by the two femtosecond lasers examined. Keywords: Moria M2, IntraLase FS60, WaveLight® FS200, Allegretto Wave® Eye-Q, 400 Hz excimer, ultrasound biomicroscopy
format article
author Kanellopoulos AJ
Asimellis G
author_facet Kanellopoulos AJ
Asimellis G
author_sort Kanellopoulos AJ
title Three-dimensional LASIK flap thickness variability: topographic central, paracentral and peripheral assessment, in flaps created by a mechanical microkeratome (M2) and two different femtosecond lasers (FS60 and FS200)
title_short Three-dimensional LASIK flap thickness variability: topographic central, paracentral and peripheral assessment, in flaps created by a mechanical microkeratome (M2) and two different femtosecond lasers (FS60 and FS200)
title_full Three-dimensional LASIK flap thickness variability: topographic central, paracentral and peripheral assessment, in flaps created by a mechanical microkeratome (M2) and two different femtosecond lasers (FS60 and FS200)
title_fullStr Three-dimensional LASIK flap thickness variability: topographic central, paracentral and peripheral assessment, in flaps created by a mechanical microkeratome (M2) and two different femtosecond lasers (FS60 and FS200)
title_full_unstemmed Three-dimensional LASIK flap thickness variability: topographic central, paracentral and peripheral assessment, in flaps created by a mechanical microkeratome (M2) and two different femtosecond lasers (FS60 and FS200)
title_sort three-dimensional lasik flap thickness variability: topographic central, paracentral and peripheral assessment, in flaps created by a mechanical microkeratome (m2) and two different femtosecond lasers (fs60 and fs200)
publisher Dove Medical Press
publishDate 2013
url https://doaj.org/article/69f7683351d545a5a11d911d1bea8405
work_keys_str_mv AT kanellopoulosaj threedimensionallasikflapthicknessvariabilitytopographiccentralparacentralandperipheralassessmentinflapscreatedbyamechanicalmicrokeratomem2andtwodifferentfemtosecondlasersfs60andfs200
AT asimellisg threedimensionallasikflapthicknessvariabilitytopographiccentralparacentralandperipheralassessmentinflapscreatedbyamechanicalmicrokeratomem2andtwodifferentfemtosecondlasersfs60andfs200
_version_ 1718403805336305664