Intelligent Prediction of Aeroengine Wear Based on the SVR Optimized by GMPSO
In order to predict aeroengine wear accurately and automatically, as a predictor, support vector regression (SVR) was optimized by means of particle swarm optimization (PSO). The guided mutation strategy of PSO (GMPSO) is presented herein to determine the proper structure parameters of an SVR, as we...
Guardado en:
Autores principales: | Bo Zheng, Feng Gao, Xin Ma, Xiaoqiang Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6a006ee0727f410a8cfcbd58d4f62209 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Investigation of Wear and Wear Particles from Shelf-Aged Crosslinked UHMWPE under Different Contact Pressures
por: Lei Zhang, et al.
Publicado: (2015) -
Non-intrusive load identification based on CF-MF-SE joint feature
por: Guoqing AN, et al.
Publicado: (2021) -
Role of Wear Particles in Scuffing Initiation
por: Haijiang Li, et al.
Publicado: (2013) -
Acoustic Emission Signals and Wear Phenomena on Severe-Mild Wear Transition
por: Alan Hase, et al.
Publicado: (2008) -
Effects of Counterface Surface Roughness on Friction and Wear of PEEK Materials under Oil-Lubricated Conditions
por: Tomoharu Akagaki, et al.
Publicado: (2016)