Riemannian Gaussian distributions, random matrix ensembles and diffusion kernels
We show that the Riemannian Gaussian distributions on symmetric spaces, introduced in recent years, are of standard random matrix type. We exploit this to compute analytically marginals of the probability density functions. This can be done fully, using Stieltjes-Wigert orthogonal polynomials, for t...
Guardado en:
Autores principales: | Leonardo Santilli, Miguel Tierz |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6a181fa0640c4ca6ab092525f9fbbe10 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Nonlinear-Maxwell-Yukawa de-Sitter black hole thermodynamics in a cavity: I−Canonical ensemble
por: Hasan El Moumni, et al.
Publicado: (2021) -
W-representations of the fermionic matrix and Aristotelian tensor models
por: Lu-Yao Wang, et al.
Publicado: (2021) -
Advanced analysis of laser-driven pulsed magnetic diffusion based on quantum molecular dynamics simulation
por: Hiroki Morita, et al.
Publicado: (2021) -
A full parametrization of the 9 × 9 active-sterile flavor mixing matrix in the inverse or linear seesaw scenario of massive neutrinos
por: He-chong Han, et al.
Publicado: (2021) -
Beam-beam interaction in a dielectric laser accelerator electron-positron collider
por: R. Joel England, et al.
Publicado: (2021)