Cryptic diversity in the Japanese mantis shrimp Oratosquilla oratoria (Crustacea: Squillidae): Allopatric diversification, secondary contact and hybridization

Abstract Mounting evidence of cryptic species in the marine realm emphasizes the necessity to thoroughly revise our current perceptions of marine biodiversity and species distributions. Here, we used mitochondrial cytochrome oxidase subunit I (mtDNA COI) and nuclear ribosomal internal transcribed sp...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jiao Cheng, Zhong-li Sha
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/6a1fa7a57ea14db4af6e8766a57fa932
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6a1fa7a57ea14db4af6e8766a57fa932
record_format dspace
spelling oai:doaj.org-article:6a1fa7a57ea14db4af6e8766a57fa9322021-12-02T15:05:57ZCryptic diversity in the Japanese mantis shrimp Oratosquilla oratoria (Crustacea: Squillidae): Allopatric diversification, secondary contact and hybridization10.1038/s41598-017-02059-72045-2322https://doaj.org/article/6a1fa7a57ea14db4af6e8766a57fa9322017-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-02059-7https://doaj.org/toc/2045-2322Abstract Mounting evidence of cryptic species in the marine realm emphasizes the necessity to thoroughly revise our current perceptions of marine biodiversity and species distributions. Here, we used mitochondrial cytochrome oxidase subunit I (mtDNA COI) and nuclear ribosomal internal transcribed spacer (nrDNA ITS) to investigate cryptic diversity and potential hybridization in the Japanese mantis shrimp Oratosquilla oratoria in the Northwestern (NW) Pacific. Both mitochondrial and nuclear gene genealogies revealed two cryptic species in this morphotaxon, which was further confirmed by extensive population-level analyses. One cryptic species is restricted to cold waters with a distribution range corresponding to temperate affinities, while the other dwelled warm waters influenced by the Kuroshio Current. Their divergence was postulated to be attributable to the vicariant event which resulted from the isolation of the Sea of Japan during the middle Pliocene (c. 3.85 Mya, 95% HPD 2.23–6.07 Mya). Allopatric speciation was maintained by limited genetic exchange due to their habitat preferences. Furthermore, the observation of recombinant nrDNA ITS sequence and intra-individual ITS polymorphism suggested recent hybridization event of the two cryptic species occurred in sympatric areas. Our study also illustrated that the Changjiang River outflow might act as an oceanic barrier to gene flow and promoted allopatric diversification in O. oratoria species complex.Jiao ChengZhong-li ShaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-13 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Jiao Cheng
Zhong-li Sha
Cryptic diversity in the Japanese mantis shrimp Oratosquilla oratoria (Crustacea: Squillidae): Allopatric diversification, secondary contact and hybridization
description Abstract Mounting evidence of cryptic species in the marine realm emphasizes the necessity to thoroughly revise our current perceptions of marine biodiversity and species distributions. Here, we used mitochondrial cytochrome oxidase subunit I (mtDNA COI) and nuclear ribosomal internal transcribed spacer (nrDNA ITS) to investigate cryptic diversity and potential hybridization in the Japanese mantis shrimp Oratosquilla oratoria in the Northwestern (NW) Pacific. Both mitochondrial and nuclear gene genealogies revealed two cryptic species in this morphotaxon, which was further confirmed by extensive population-level analyses. One cryptic species is restricted to cold waters with a distribution range corresponding to temperate affinities, while the other dwelled warm waters influenced by the Kuroshio Current. Their divergence was postulated to be attributable to the vicariant event which resulted from the isolation of the Sea of Japan during the middle Pliocene (c. 3.85 Mya, 95% HPD 2.23–6.07 Mya). Allopatric speciation was maintained by limited genetic exchange due to their habitat preferences. Furthermore, the observation of recombinant nrDNA ITS sequence and intra-individual ITS polymorphism suggested recent hybridization event of the two cryptic species occurred in sympatric areas. Our study also illustrated that the Changjiang River outflow might act as an oceanic barrier to gene flow and promoted allopatric diversification in O. oratoria species complex.
format article
author Jiao Cheng
Zhong-li Sha
author_facet Jiao Cheng
Zhong-li Sha
author_sort Jiao Cheng
title Cryptic diversity in the Japanese mantis shrimp Oratosquilla oratoria (Crustacea: Squillidae): Allopatric diversification, secondary contact and hybridization
title_short Cryptic diversity in the Japanese mantis shrimp Oratosquilla oratoria (Crustacea: Squillidae): Allopatric diversification, secondary contact and hybridization
title_full Cryptic diversity in the Japanese mantis shrimp Oratosquilla oratoria (Crustacea: Squillidae): Allopatric diversification, secondary contact and hybridization
title_fullStr Cryptic diversity in the Japanese mantis shrimp Oratosquilla oratoria (Crustacea: Squillidae): Allopatric diversification, secondary contact and hybridization
title_full_unstemmed Cryptic diversity in the Japanese mantis shrimp Oratosquilla oratoria (Crustacea: Squillidae): Allopatric diversification, secondary contact and hybridization
title_sort cryptic diversity in the japanese mantis shrimp oratosquilla oratoria (crustacea: squillidae): allopatric diversification, secondary contact and hybridization
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/6a1fa7a57ea14db4af6e8766a57fa932
work_keys_str_mv AT jiaocheng crypticdiversityinthejapanesemantisshrimporatosquillaoratoriacrustaceasquillidaeallopatricdiversificationsecondarycontactandhybridization
AT zhonglisha crypticdiversityinthejapanesemantisshrimporatosquillaoratoriacrustaceasquillidaeallopatricdiversificationsecondarycontactandhybridization
_version_ 1718388649059418112