Bayesian nonparametric discovery of isoforms and individual specific quantification
Alternative splicing leads to transcript isoform diversity. Here, Aguiar et al. develop biisq, a Bayesian nonparametric approach to discover and quantify isoforms from RNA-seq data.
Guardado en:
Autores principales: | Derek Aguiar, Li-Fang Cheng, Bianca Dumitrascu, Fantine Mordelet, Athma A. Pai, Barbara E. Engelhardt |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6a28ab9e7cc640d796b018e6bdb3af53 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Bayesian nonparametric models characterize instantaneous strategies in a competitive dynamic game
por: Kelsey R. McDonald, et al.
Publicado: (2019) -
A fast and robust Bayesian nonparametric method for prediction of complex traits using summary statistics.
por: Geyu Zhou, et al.
Publicado: (2021) -
Journal of nonparametric statistics
Publicado: (1991) -
Nonparametric sparsification of complex multiscale networks.
por: Nicholas J Foti, et al.
Publicado: (2011) -
TIGAR-V2: Efficient TWAS tool with nonparametric Bayesian eQTL weights of 49 tissue types from GTEx V8
por: Randy L. Parrish, et al.
Publicado: (2022)