Bayesian nonparametric discovery of isoforms and individual specific quantification
Alternative splicing leads to transcript isoform diversity. Here, Aguiar et al. develop biisq, a Bayesian nonparametric approach to discover and quantify isoforms from RNA-seq data.
Enregistré dans:
Auteurs principaux: | Derek Aguiar, Li-Fang Cheng, Bianca Dumitrascu, Fantine Mordelet, Athma A. Pai, Barbara E. Engelhardt |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2018
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/6a28ab9e7cc640d796b018e6bdb3af53 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Bayesian nonparametric models characterize instantaneous strategies in a competitive dynamic game
par: Kelsey R. McDonald, et autres
Publié: (2019) -
A fast and robust Bayesian nonparametric method for prediction of complex traits using summary statistics.
par: Geyu Zhou, et autres
Publié: (2021) -
Journal of nonparametric statistics
Publié: (1991) -
Nonparametric sparsification of complex multiscale networks.
par: Nicholas J Foti, et autres
Publié: (2011) -
TIGAR-V2: Efficient TWAS tool with nonparametric Bayesian eQTL weights of 49 tissue types from GTEx V8
par: Randy L. Parrish, et autres
Publié: (2022)