Opportunistic Relay in Multicast Channels With Generalized Shadowed Fading Effects: A Physical Layer Security Perspective
Through ordinary transmissions over wireless multicast networks are greatly hampered due to the simultaneous presence of fading and shadowing of wireless channels, secure transmissions can be enhanced by properly exploiting random attributes of the propagation medium. This study focuses on the utili...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6a2da951a8bd4001bb2d2a15234f1f9e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6a2da951a8bd4001bb2d2a15234f1f9e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6a2da951a8bd4001bb2d2a15234f1f9e2021-12-01T00:00:51ZOpportunistic Relay in Multicast Channels With Generalized Shadowed Fading Effects: A Physical Layer Security Perspective2169-353610.1109/ACCESS.2021.3128572https://doaj.org/article/6a2da951a8bd4001bb2d2a15234f1f9e2021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9615217/https://doaj.org/toc/2169-3536Through ordinary transmissions over wireless multicast networks are greatly hampered due to the simultaneous presence of fading and shadowing of wireless channels, secure transmissions can be enhanced by properly exploiting random attributes of the propagation medium. This study focuses on the utilization of those attributes to enhance the physical layer security (PLS) performance of a dual-hop wireless multicast network over <inline-formula> <tex-math notation="LaTeX">$\kappa -\mu $ </tex-math></inline-formula> shadow-fading channel under the wiretapping attempts of multiple eavesdroppers. In order to improve the secrecy level, the best relay selection strategy among multiple relays is employed. Performance analysis is carried out based on the mathematical modeling in terms of analytical expressions of non-zero secrecy capacity probability, secure outage probability, and ergodic secrecy capacity over multicast relay networks. Capitalizing on those expressions, the effects of system parameters, i.e., fading, shadowing, the number of antennas, destination receivers, eavesdroppers, and relays, on the secrecy performance are investigated. Numerical results show that the detrimental impacts caused by fading and shadowing can be remarkably mitigated using the well-known opportunistic relaying technique. Moreover, the proposed model unifies secrecy analysis of several classical models, thereby exhibiting enormous versatility than the existing works. Finally, all the numerical results are authenticated utilizing Monte-Carlo simulations.S. M. Saumik ShahriyerA. S. M. BadrudduzaSarjana ShababMilton Kumar KunduHeejung YuIEEEarticleκ – μ shadowed fadingopportunistic relayingphysical layer securitysecure outage probabilitywireless multicastingElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Access, Vol 9, Pp 155726-155739 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
κ – μ shadowed fading opportunistic relaying physical layer security secure outage probability wireless multicasting Electrical engineering. Electronics. Nuclear engineering TK1-9971 |
spellingShingle |
κ – μ shadowed fading opportunistic relaying physical layer security secure outage probability wireless multicasting Electrical engineering. Electronics. Nuclear engineering TK1-9971 S. M. Saumik Shahriyer A. S. M. Badrudduza Sarjana Shabab Milton Kumar Kundu Heejung Yu Opportunistic Relay in Multicast Channels With Generalized Shadowed Fading Effects: A Physical Layer Security Perspective |
description |
Through ordinary transmissions over wireless multicast networks are greatly hampered due to the simultaneous presence of fading and shadowing of wireless channels, secure transmissions can be enhanced by properly exploiting random attributes of the propagation medium. This study focuses on the utilization of those attributes to enhance the physical layer security (PLS) performance of a dual-hop wireless multicast network over <inline-formula> <tex-math notation="LaTeX">$\kappa -\mu $ </tex-math></inline-formula> shadow-fading channel under the wiretapping attempts of multiple eavesdroppers. In order to improve the secrecy level, the best relay selection strategy among multiple relays is employed. Performance analysis is carried out based on the mathematical modeling in terms of analytical expressions of non-zero secrecy capacity probability, secure outage probability, and ergodic secrecy capacity over multicast relay networks. Capitalizing on those expressions, the effects of system parameters, i.e., fading, shadowing, the number of antennas, destination receivers, eavesdroppers, and relays, on the secrecy performance are investigated. Numerical results show that the detrimental impacts caused by fading and shadowing can be remarkably mitigated using the well-known opportunistic relaying technique. Moreover, the proposed model unifies secrecy analysis of several classical models, thereby exhibiting enormous versatility than the existing works. Finally, all the numerical results are authenticated utilizing Monte-Carlo simulations. |
format |
article |
author |
S. M. Saumik Shahriyer A. S. M. Badrudduza Sarjana Shabab Milton Kumar Kundu Heejung Yu |
author_facet |
S. M. Saumik Shahriyer A. S. M. Badrudduza Sarjana Shabab Milton Kumar Kundu Heejung Yu |
author_sort |
S. M. Saumik Shahriyer |
title |
Opportunistic Relay in Multicast Channels With Generalized Shadowed Fading Effects: A Physical Layer Security Perspective |
title_short |
Opportunistic Relay in Multicast Channels With Generalized Shadowed Fading Effects: A Physical Layer Security Perspective |
title_full |
Opportunistic Relay in Multicast Channels With Generalized Shadowed Fading Effects: A Physical Layer Security Perspective |
title_fullStr |
Opportunistic Relay in Multicast Channels With Generalized Shadowed Fading Effects: A Physical Layer Security Perspective |
title_full_unstemmed |
Opportunistic Relay in Multicast Channels With Generalized Shadowed Fading Effects: A Physical Layer Security Perspective |
title_sort |
opportunistic relay in multicast channels with generalized shadowed fading effects: a physical layer security perspective |
publisher |
IEEE |
publishDate |
2021 |
url |
https://doaj.org/article/6a2da951a8bd4001bb2d2a15234f1f9e |
work_keys_str_mv |
AT smsaumikshahriyer opportunisticrelayinmulticastchannelswithgeneralizedshadowedfadingeffectsaphysicallayersecurityperspective AT asmbadrudduza opportunisticrelayinmulticastchannelswithgeneralizedshadowedfadingeffectsaphysicallayersecurityperspective AT sarjanashabab opportunisticrelayinmulticastchannelswithgeneralizedshadowedfadingeffectsaphysicallayersecurityperspective AT miltonkumarkundu opportunisticrelayinmulticastchannelswithgeneralizedshadowedfadingeffectsaphysicallayersecurityperspective AT heejungyu opportunisticrelayinmulticastchannelswithgeneralizedshadowedfadingeffectsaphysicallayersecurityperspective |
_version_ |
1718406144363331584 |