Detecting quantum critical points in the t- $$t'$$ t ′ Fermi-Hubbard model via complex network theory

Abstract A considerable success in phenomenological description of $$\text {high-T}_{\text{c}}$$ high-T c superconductors has been achieved within the paradigm of Quantum Critical Point (QCP)—a parental state of a variety of exotic phases that is characterized by dense entanglement and absence of we...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Andrey A. Bagrov, Mikhail Danilov, Sergey Brener, Malte Harland, Alexander I. Lichtenstein, Mikhail I. Katsnelson
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
R
Q
Acceso en línea:https://doaj.org/article/6a2e2c0e8a694079bbae9e3881472183
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6a2e2c0e8a694079bbae9e3881472183
record_format dspace
spelling oai:doaj.org-article:6a2e2c0e8a694079bbae9e38814721832021-12-02T11:42:15ZDetecting quantum critical points in the t- $$t'$$ t ′ Fermi-Hubbard model via complex network theory10.1038/s41598-020-77513-02045-2322https://doaj.org/article/6a2e2c0e8a694079bbae9e38814721832020-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-77513-0https://doaj.org/toc/2045-2322Abstract A considerable success in phenomenological description of $$\text {high-T}_{\text{c}}$$ high-T c superconductors has been achieved within the paradigm of Quantum Critical Point (QCP)—a parental state of a variety of exotic phases that is characterized by dense entanglement and absence of well-defined quasiparticles. However, the microscopic origin of the critical regime in real materials remains an open question. On the other hand, there is a popular view that a single-band t- $$t'$$ t ′ Hubbard model is the minimal model to catch the main relevant physics of superconducting compounds. Here, we suggest that emergence of the QCP is tightly connected with entanglement in real space and identify its location on the phase diagram of the hole-doped t- $$t'$$ t ′ Hubbard model. To detect the QCP we study a weighted graph of inter-site quantum mutual information within a four-by-four plaquette that is solved by exact diagonalization. We demonstrate that some quantitative characteristics of such a graph, viewed as a complex network, exhibit peculiar behavior around a certain submanifold in the parametric space of the model. This method allows us to overcome difficulties caused by finite size effects and to identify precursors of the transition point even on a small lattice, where long-range asymptotics of correlation functions cannot be accessed.Andrey A. BagrovMikhail DanilovSergey BrenerMalte HarlandAlexander I. LichtensteinMikhail I. KatsnelsonNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-9 (2020)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Andrey A. Bagrov
Mikhail Danilov
Sergey Brener
Malte Harland
Alexander I. Lichtenstein
Mikhail I. Katsnelson
Detecting quantum critical points in the t- $$t'$$ t ′ Fermi-Hubbard model via complex network theory
description Abstract A considerable success in phenomenological description of $$\text {high-T}_{\text{c}}$$ high-T c superconductors has been achieved within the paradigm of Quantum Critical Point (QCP)—a parental state of a variety of exotic phases that is characterized by dense entanglement and absence of well-defined quasiparticles. However, the microscopic origin of the critical regime in real materials remains an open question. On the other hand, there is a popular view that a single-band t- $$t'$$ t ′ Hubbard model is the minimal model to catch the main relevant physics of superconducting compounds. Here, we suggest that emergence of the QCP is tightly connected with entanglement in real space and identify its location on the phase diagram of the hole-doped t- $$t'$$ t ′ Hubbard model. To detect the QCP we study a weighted graph of inter-site quantum mutual information within a four-by-four plaquette that is solved by exact diagonalization. We demonstrate that some quantitative characteristics of such a graph, viewed as a complex network, exhibit peculiar behavior around a certain submanifold in the parametric space of the model. This method allows us to overcome difficulties caused by finite size effects and to identify precursors of the transition point even on a small lattice, where long-range asymptotics of correlation functions cannot be accessed.
format article
author Andrey A. Bagrov
Mikhail Danilov
Sergey Brener
Malte Harland
Alexander I. Lichtenstein
Mikhail I. Katsnelson
author_facet Andrey A. Bagrov
Mikhail Danilov
Sergey Brener
Malte Harland
Alexander I. Lichtenstein
Mikhail I. Katsnelson
author_sort Andrey A. Bagrov
title Detecting quantum critical points in the t- $$t'$$ t ′ Fermi-Hubbard model via complex network theory
title_short Detecting quantum critical points in the t- $$t'$$ t ′ Fermi-Hubbard model via complex network theory
title_full Detecting quantum critical points in the t- $$t'$$ t ′ Fermi-Hubbard model via complex network theory
title_fullStr Detecting quantum critical points in the t- $$t'$$ t ′ Fermi-Hubbard model via complex network theory
title_full_unstemmed Detecting quantum critical points in the t- $$t'$$ t ′ Fermi-Hubbard model via complex network theory
title_sort detecting quantum critical points in the t- $$t'$$ t ′ fermi-hubbard model via complex network theory
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/6a2e2c0e8a694079bbae9e3881472183
work_keys_str_mv AT andreyabagrov detectingquantumcriticalpointsinthetttfermihubbardmodelviacomplexnetworktheory
AT mikhaildanilov detectingquantumcriticalpointsinthetttfermihubbardmodelviacomplexnetworktheory
AT sergeybrener detectingquantumcriticalpointsinthetttfermihubbardmodelviacomplexnetworktheory
AT malteharland detectingquantumcriticalpointsinthetttfermihubbardmodelviacomplexnetworktheory
AT alexanderilichtenstein detectingquantumcriticalpointsinthetttfermihubbardmodelviacomplexnetworktheory
AT mikhailikatsnelson detectingquantumcriticalpointsinthetttfermihubbardmodelviacomplexnetworktheory
_version_ 1718395347248611328