A genome-scale metabolic model of Saccharomyces cerevisiae that integrates expression constraints and reaction thermodynamics
Formulating metabolic networks mathematically can help researchers study metabolic diseases and optimize the production of industrially important molecules. Here, the authors propose a framework that allows to model eukaryotic metabolism considering gene expression and thermodynamic constraints.
Guardado en:
Autores principales: | Omid Oftadeh, Pierre Salvy, Maria Masid, Maxime Curvat, Ljubisa Miskovic, Vassily Hatzimanikatis |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6a2e860a1f4d4e6f8e04de3cbd18266b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The ETFL formulation allows multi-omics integration in thermodynamics-compliant metabolism and expression models
por: Pierre Salvy, et al.
Publicado: (2020) -
Analysis of human metabolism by reducing the complexity of the genome-scale models using redHUMAN
por: Maria Masid, et al.
Publicado: (2020) -
Author Correction: Analysis of human metabolism by reducing the complexity of the genome-scale models using redHUMAN
por: Maria Masid, et al.
Publicado: (2020) -
The Role of Tyrosine 207 in the Reaction Catalyzed by Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase
por: Andrade,Cherie, et al.
Publicado: (2010) -
Efficient production of vindoline from tabersonine by metabolically engineered Saccharomyces cerevisiae
por: Tengfei Liu, et al.
Publicado: (2021)